19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy

      1 , 1 , 1 , 2 , 2 , 3
      Journal of Cerebral Blood Flow & Metabolism
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d272103e159">Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection. </p>

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Recommendations for standards regarding preclinical neuroprotective and restorative drug development.

          (1999)
          The plethora of failed clinical trials with neuroprotective drugs for acute ischemic stroke have raised justifiable concerns about how best to proceed for the future development of such interventions. Preclinical testing of neuroprotective drugs is an important aspect of assessing their therapeutic potential, but guidelines concerning how to perform preclinical development of purported neuroprotective drugs for acute ischemic stroke are lacking. This conference of academicians and industry representatives was convened to suggest such guidelines for the preclinical evaluation of neuroprotective drugs and to recommend to potential clinical investigators the data they should review to reassure themselves that a particular neuroprotective drug has a reasonable chance to succeed in an appropriately designed clinical trial. Without rigorous, robust, and detailed preclinical evaluation, it is unlikely that novel neuroprotective drugs will prove to be effective when tested in large, time-consuming, and expensive clinical trials. Additionally, similar recommendations are provided for drugs with the potential to enhance recovery after acute ischemic stroke, a burgeoning new field with great potential but little currently available data. The suggestions contained in this document are meant to serve as overall guidelines that must be adapted to the individual characteristics related to particular drugs and their preclinical and clinical development needs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury.

            Hypoxic-ischemic injury to the periventricular cerebral white matter [periventricular leukomalacia (PVL)] results in cerebral palsy and is the leading cause of brain injury in premature infants. The principal feature of PVL is a chronic disturbance of myelination and suggests that oligodendrocyte (OL) lineage progression is disrupted by ischemic injury. We determined the OL lineage stages at risk for injury during the developmental window of vulnerability for PVL (23-32 weeks, postconceptional age). In 26 normal control autopsy human brains, OL lineage progression was defined in parietal white matter, a region of predilection for PVL. Three successive OL stages, the late OL progenitor, the immature OL, and the mature OL, were characterized between 18 and 41 weeks with anti-NG2 proteoglycan, O4, O1, and anti-myelin basic protein (anti-MBP) antibodies. NG2+O4+ late OL progenitors were the predominant stage throughout the latter half of gestation. Between 18 and 27 weeks, O4+O1+ immature OLs were a minor population (9.9 +/- 2.1% of total OLs; n = 9). Between 28 and 41 weeks, an increase in immature OLs to 30.9 +/- 2.1% of total OLs (n = 9) was accompanied by a progressive increase in MBP+ myelin sheaths that were restricted to the periventricular white matter. The developmental window of high risk for PVL thus precedes the onset of myelination and identifies the late OL progenitor as the major potential target. Moreover, the decline in incidence of PVL at approximately 32 weeks coincides with the onset of myelination in the periventricular white matter and suggests that the risk for PVL is related to the presence of late OL progenitors in the periventricular white matter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DARPP-32: an integrator of neurotransmission.

              Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32), was identified initially as a major target for dopamine and protein kinase A (PKA) in striatum. However, recent advances now indicate that regulation of the state of DARPP-32 phosphorylation provides a mechanism for integrating information arriving at dopaminoceptive neurons, in multiple brain regions, via a variety of neurotransmitters, neuromodulators, neuropeptides, and steroid hormones. Activation of PKA or PKG stimulates DARPP-32 phosphorylation at Thr34 and thereby converts DARPP-32 into a potent inhibitor of protein phosphatase-1 (PP-1). DARPP-32 is also phosphorylated at Thr75 by Cdk5 and this converts DARPP-32 into an inhibitor of PKA. Thus, DARPP-32 has the unique property of being a dual-function protein, acting either as an inhibitor of PP-1 or of PKA. The state of phosphorylation of DARPP-32 at Thr34 depends on the phosphorylation state of two serine residues, Ser102 and Ser137, which are phosphorylated by CK2 and CK1, respectively. By virtue of its ability to modulate the activity of PP-1 and PKA, DARPP-32 is critically involved in regulating electrophysiological, transcriptional, and behavioral responses to physiological and pharmacological stimuli, including antidepressants, neuroleptics, and drugs of abuse.
                Bookmark

                Author and article information

                Journal
                Journal of Cerebral Blood Flow & Metabolism
                J Cereb Blood Flow Metab
                SAGE Publications
                0271-678X
                1559-7016
                July 18 2018
                December 2018
                August 28 2018
                December 2018
                : 38
                : 12
                : 2092-2111
                Affiliations
                [1 ]Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
                [2 ]The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
                [3 ]Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
                Article
                10.1177/0271678X18797328
                6282216
                30149778
                5aa06bc8-bbf6-42c8-a8e5-8f8d1a66e8e1
                © 2018

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article