36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concentrations and Potential Health Risks of Metals in Lip Products

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Metal content in lip products has been an issue of concern.

          Objectives: We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals.

          Methods: We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks.

          Results: Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were < 20% of ADIs for average and high use.

          Conclusions: Cosmetics safety should be assessed not only by the presence of hazardous contents, but also by comparing estimated exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Manganese toxicity upon overexposure.

          Manganese (Mn) is a required element and a metabolic byproduct of the contrast agent mangafodipir trisodium (MnDPDP). The Mn released from MnDPDP is initially sequestered by the liver for first-pass elimination, which allows an enhanced contrast for diagnostic imaging. The administration of intravenous Mn impacts its homeostatic balance in the human body and can lead to toxicity. Human Mn deficiency has been reported in patients on parenteral nutrition and in micronutrient studies. Mn toxicity has been reported through occupational (e.g. welder) and dietary overexposure and is evidenced primarily in the central nervous system, although lung, cardiac, liver, reproductive and fetal toxicity have been noted. Mn neurotoxicity results from an accumulation of the metal in brain tissue and results in a progressive disorder of the extrapyramidal system which is similar to Parkinson's disease. In order for Mn to distribute from blood into brain tissue, it must cross either the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCB). Brain import, with no evidence of export, would lead to brain Mn accumulation and neurotoxicity. The mechanism for the neurodegenerative damage specific to select brain regions is not clearly understood. Disturbances in iron homeostasis and the valence state of Mn have been implicated as key factors in contributing to Mn toxicity. Chelation therapy with EDTA and supplementation with levodopa are the current treatment options, which are mildly and transiently efficacious. In conclusion, repeated administration of Mn, or compounds that readily release Mn, may increase the risk of Mn-induced toxicity. Copyright 2004 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental exposure to cadmium and risk of cancer: a prospective population-based study.

            Cadmium is a ubiquitous environmental pollutant, which accumulates in the human body such that 24-h urinary excretion is a biomarker of lifetime exposure. We aimed to assess the association between environmental exposure to cadmium and cancer. We recruited a random population sample (n=994) from an area close to three zinc smelters and a reference population from an area with low exposure to cadmium. At baseline (1985-89), we measured cadmium in urine samples obtained over 24 h and in the soil of participants' gardens, and followed the incidence of cancer until June 30, 2004. We used Cox regression to calculate hazard ratios for cancer in relation to internal (ie, urinary) and external (ie, soil) exposure to cadmium, while adjusting for covariables. Cadmium concentration in soil ranged from 0.8 mg/kg to 17.0 mg/kg. At baseline, geometric mean urinary cadmium excretion was 12.3 nmol/day for people in the high-exposure area, compared with 7.7 nmol/day for those in the reference (ie, low-exposure) area (p<0.0001). During follow-up (median 17.2 years [range 0.6-18.8]), 50 fatal cancers and 20 non-fatal cancers occurred, of which 18 and one, respectively, were lung cancers. Overall cancer risk was significantly associated with a doubling of 24-h cadmium excretion (hazard ratio 1.31 [95% CI 1.03-1.65], p=0.026. Population-attributable risk of lung cancer was 67% (95% CI 33-101) in the high-exposure area, compared with that of 73% (38-108) for smoking. For lung cancer, adjusted hazard ratio was 1.70 (1.13-2.57, p=0.011) for a doubling of 24-h urinary cadmium excretion, 4.17 (1.21-14.4, p=0.024) for residence in the high-exposure area versus the low-exposure area, and 1.57 (1.11-2.24, p=0.012) for a doubling of cadmium concentration in soil. Historical pollution from non-ferrous smelters continues to present a serious health hazard, necessitating targeted preventive measures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Endocrine Disruptors and Asthma-Associated Chemicals in Consumer Products

              Background: Laboratory and human studies raise concerns about endocrine disruption and asthma resulting from exposure to chemicals in consumer products. Limited labeling or testing information is available to evaluate products as exposure sources. Objectives: We analytically quantified endocrine disruptors and asthma-related chemicals in a range of cosmetics, personal care products, cleaners, sunscreens, and vinyl products. We also evaluated whether product labels provide information that can be used to select products without these chemicals. Methods: We selected 213 commercial products representing 50 product types. We tested 42 composited samples of high-market-share products, and we tested 43 alternative products identified using criteria expected to minimize target compounds. Analytes included parabens, phthalates, bisphenol A (BPA), triclosan, ethanolamines, alkylphenols, fragrances, glycol ethers, cyclosiloxanes, and ultraviolet (UV) filters. Results: We detected 55 compounds, indicating a wide range of exposures from common products. Vinyl products contained > 10% bis(2-ethylhexyl) phthalate (DEHP) and could be an important source of DEHP in homes. In other products, the highest concentrations and numbers of detects were in the fragranced products (e.g., perfume, air fresheners, and dryer sheets) and in sunscreens. Some products that did not contain the well-known endocrine-disrupting phthalates contained other less-studied phthalates (dicyclohexyl phthalate, diisononyl phthalate, and di-n-propyl phthalate; also endocrine-disrupting compounds), suggesting a substitution. Many detected chemicals were not listed on product labels. Conclusions: Common products contain complex mixtures of EDCs and asthma-related compounds. Toxicological studies of these mixtures are needed to understand their biological activity. Regarding epidemiology, our findings raise concern about potential confounding from co-occurring chemicals and misclassification due to variability in product composition. Consumers should be able to avoid some target chemicals—synthetic fragrances, BPA, and regulated active ingredients—using purchasing criteria. More complete product labeling would enable consumers to avoid the rest of the target chemicals.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                02 May 2013
                June 2013
                : 121
                : 6
                : 705-710
                Affiliations
                [1 ]Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
                [2 ]Asian Communities for Reproductive Justice,* Oakland, California, USA
                Author notes
                Address correspondence to S.K. Hammond, Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, 50 University Hall MC7360, Berkeley, CA 94720-7360 USA. Telephone: (510) 643-0289. E-mail: hammondk@ 123456berkeley.edu
                [*]

                Asian Communities for Reproductive Justice is now known as Forward Together.

                Article
                ehp.1205518
                10.1289/ehp.1205518
                3672908
                23674482
                5a89b362-86cc-412e-80c0-134d66a70ccd
                Copyright @ 2013

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 24 May 2012
                : 04 April 2013
                Categories
                Research

                Public health
                cosmetic safety,health risk,lipstick,metal,susceptible populations
                Public health
                cosmetic safety, health risk, lipstick, metal, susceptible populations

                Comments

                Comment on this article