14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular cloning and characterization of sphingolipid ceramide N-deacylase from a marine bacterium, Shewanella alga G8.

      The Journal of Biological Chemistry
      Amidohydrolases, chemistry, genetics, isolation & purification, Amino Acid Sequence, Base Sequence, Cloning, Molecular, Electrophoresis, Polyacrylamide Gel, Gene Deletion, Glycosphingolipids, Hydrogen-Ion Concentration, Molecular Sequence Data, Phylogeny, Plasmids, metabolism, Protein Binding, Protein Biosynthesis, Protein Structure, Tertiary, Shewanella, enzymology, Sphingomyelins, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, lyso-sphingolipids have been identified as ligands for several orphan G protein-coupled receptors, although the molecular mechanism for their generation has yet to be clarified. Here, we report the molecular cloning of the enzyme, which catalyzes the generation of lyso-sphingolipids from various sphingolipids (sphingolipid ceramide N-deacylase). The 75-kDa enzyme was purified from the marine bacterium, Shewanella alga G8, and its gene was cloned from a G8 genomic library using sequences of the purified enzyme. The cloned enzyme was composed of 992 amino acids, including a signal sequence of 35 residues, and its molecular weight was estimated to be 109,843. Significant sequence similarities were found with an unknown protein of Streptomyces fradiae Y59 and a Lumbricus terrestris lectin but not other known functional proteins. The 106-kDa recombinant enzyme expressed in Escherichia coli hydrolyzed various glycosphingolipids and sphingomyelin, although it seems to be much less active than the native 75-kDa enzyme. In vitro translation using wheat germ extract revealed the activity of a 75-kDa deletion mutant lacking a C terminus to be much stronger than that of the full-length enzyme, suggesting that C-terminal processing is necessary for full activity.

          Related collections

          Author and article information

          Comments

          Comment on this article