4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Light-Inducible Protein (ELIP) Can Enhance Resistance to Cold-Induced Photooxidative Stress in Chlamydomonas reinhardtii

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cold weather is one of the biggest challenges in establishing a large-scale microalgae culture facility in temperate regions. In order to develop a strain that is resistant to low temperatures and still maintains high photosynthetic efficiency, transgenic studies have been conducted targeting many genes. Early light-inducible proteins (ELIPs) located in thylakoid membranes are known to protect photosynthetic machinery from various environmental stresses in higher plants. An ELIP homolog was identified from Chlamydomonas reinhardtii and named ELIP3. The role of the gene was analyzed in terms of photosynthetic CO 2 assimilation under cold stress. Western blot results showed a significant accumulation of ELIP3 when the cells were exposed to cold stress (4°C). High light stress alone did not induce the accumulation of the protein. Enhanced expression of ELIP3 helped survival of the cell under photo-oxidative stress. The influx of CO 2 to the photobioreactor induced strong accumulation of ELIP3, and enhanced survival of the cell under high light and cold stress. When the oxidative stress was reduced by adding a ROS quencher, TEMPOL, to the media the expression of ELIP3 was reduced. A knockdown mutant showed much lower photosynthetic efficiency than wild type in low temperature, and died rapidly when it was exposed to high light and cold stress. The overexpression mutant survived significantly longer in the same conditions. Interestingly, knockdown mutants showed negative phototaxis, while the overexpression mutant showed positive phototaxis. These results suggest that ELIP3 may be involved in the regulation of the redox state of the cell and takes important role in protecting the photosystem under photooxidative stress in low temperatures.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.

          Many plants, including Arabidopsis, increase in freezing tolerance in response to low, nonfreezing temperatures, a phenomenon known as cold acclimation. Previous studies established that cold acclimation involves rapid expression of the CBF transcriptional activators (also known as DREB1 proteins) in response to low temperature followed by induction of the CBF regulon (CBF-targeted genes), which contributes to an increase in freezing tolerance. Here, we present the results of transcriptome-profiling experiments indicating the existence of multiple low-temperature regulatory pathways in addition to the CBF cold response pathway. The transcript levels of approximately 8000 genes were determined at multiple times after plants were transferred from warm to cold temperature and in warm-grown plants that constitutively expressed CBF1, CBF2, or CBF3. A total of 306 genes were identified as being cold responsive, with transcripts for 218 genes increasing and those for 88 genes decreasing threefold or more at one or more time points during the 7-day experiment. These results indicate that extensive downregulation of gene expression occurs during cold acclimation. Of the cold-responsive genes, 48 encode known or putative transcription factors. Two of these, RAP2.1 and RAP2.6, were activated by CBF expression and thus presumably control subregulons of the CBF regulon. Transcriptome comparisons indicated that only 12% of the cold-responsive genes are certain members of the CBF regulon. Moreover, at least 28% of the cold-responsive genes were not regulated by the CBF transcription factors, including 15 encoding known or putative transcription factors, indicating that these cold-responsive genes are members of different low-temperature regulons. Significantly, CBF expression at warm temperatures repressed the expression of eight genes that also were downregulated by low temperature, indicating that in addition to gene induction, gene repression is likely to play an integral role in cold acclimation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic engineering of algae for enhanced biofuel production.

            There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H(2) production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapid light curves: A powerful tool to assess photosynthetic activity

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                25 August 2020
                2020
                : 11
                : 1083
                Affiliations
                [1] 1Department of Biological Sciences, Kongju National University , Kongju, South Korea
                [2] 2Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea , Seocheon, South Korea
                Author notes

                Edited by: Koji Mikami, Hokkaido University, Japan

                Reviewed by: Xenie Johnson, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), France; Wayne R. Fitzgibbon, Medical University of South Carolina, United States

                *Correspondence: Gwang Hoon Kim, ghkim@ 123456kongju.ac.kr

                This article was submitted to Aquatic Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.01083
                7478268
                32982798
                5a35d90b-fcb3-40af-84bc-93480d7e0985
                Copyright © 2020 Lee, Lee, Han and Kim.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 March 2020
                : 06 August 2020
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 83, Pages: 15, Words: 0
                Funding
                Funded by: National Research Foundation of Korea 10.13039/501100003725
                Funded by: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries 10.13039/501100003668
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                elip,mutation,cold stress,ros,co2
                Anatomy & Physiology
                elip, mutation, cold stress, ros, co2

                Comments

                Comment on this article