25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neoadjuvant Nivolumab for Patients With Resectable Merkel Cell Carcinoma in the CheckMate 358 Trial

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PURPOSE

          Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer commonly driven by the Merkel cell polyomavirus (MCPyV). The programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) immunosuppressive pathway is often upregulated in MCC, and advanced metastatic MCC frequently responds to PD-1 blockade. We report what we believe to be the first trial of anti–PD-1 in the neoadjuvant setting for resectable MCC.

          METHODS

          In the phase I/II CheckMate 358 study of virus-associated cancer types, patients with resectable MCC received nivolumab 240 mg intravenously on days 1 and 15. Surgery was planned on day 29. Tumor regression was assessed radiographically and microscopically. Tumor MCPyV status, PD-L1 expression, and tumor mutational burden (TMB) were assessed in pretreatment tumor biopsies.

          RESULTS

          Thirty-nine patients with American Joint Committee on Cancer stage IIA-IV resectable MCC received ≥ 1 nivolumab dose. Three patients (7.7%) did not undergo surgery because of tumor progression (n = 1) or adverse events (n = 2). Any-grade treatment-related adverse events occurred in 18 patients (46.2%), and grade 3-4 events in 3 patients (7.7%), with no unexpected toxicities. Among 36 patients who underwent surgery, 17 (47.2%) achieved a pathologic complete response (pCR). Among 33 radiographically evaluable patients who underwent surgery, 18 (54.5%) had tumor reductions ≥ 30%. Responses were observed regardless of tumor MCPyV, PD-L1, or TMB status. At a median follow-up of 20.3 months, median recurrence-free survival (RFS) and overall survival were not reached. RFS significantly correlated with pCR and radiographic response at the time of surgery. No patient with a pCR had tumor relapse during observation.

          CONCLUSION

          Nivolumab administered approximately 4 weeks before surgery in MCC was generally tolerable and induced pCRs and radiographic tumor regressions in approximately one half of treated patients. These early markers of response significantly predicted improved RFS. Additional investigation of these promising findings is warranted.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Neoadjuvant checkpoint blockade for cancer immunotherapy

          Cancer immunotherapies that target the programmed cell death 1 (PD-1):programmed death-ligand 1 (PD-L1) immune checkpoint pathway have ushered in the modern oncology era. Drugs that block PD-1 or PD-L1 facilitate endogenous antitumor immunity and, because of their broad activity spectrum, have been regarded as a common denominator for cancer therapy. Nevertheless, many advanced tumors demonstrate de novo or acquired treatment resistance, and ongoing research efforts are focused on improving patient outcomes. Using anti–PD-1 or anti–PD-L1 treatment against earlier stages of cancer is hypothesized to be one such solution. This Review focuses on the development of neoadjuvant (presurgical) immunotherapy in the era of PD-1 pathway blockade, highlighting particular considerations for biological mechanisms, clinical trial design, and pathologic response assessments. Findings from neoadjuvant immunotherapy studies may reveal pathways, mechanisms, and molecules that can be cotargeted in new treatment combinations to increase anti–PD-1 and anti–PD-L1 efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC)

            Background Neoadjuvant anti-PD-1 may improve outcomes for patients with resectable NSCLC and provides a critical window for examining pathologic features associated with response. Resections showing major pathologic response to neoadjuvant therapy, defined as ≤10% residual viable tumor (RVT), may predict improved long-term patient outcome. However, %RVT calculations were developed in the context of chemotherapy (%cRVT). An immune-related %RVT (%irRVT) has yet to be developed. Patients and methods The first trial of neoadjuvant anti-PD-1 (nivolumab, NCT02259621) was just reported. We analyzed hematoxylin and eosin-stained slides from the post-treatment resection specimens of the 20 patients with non-small-cell lung carcinoma who underwent definitive surgery. Pretreatment tumor biopsies and preresection radiographic ‘tumor’ measurements were also assessed. Results We found that the regression bed (the area of immune-mediated tumor clearance) accounts for the previously noted discrepancy between CT imaging and pathologic assessment of residual tumor. The regression bed is characterized by (i) immune activation—dense tumor infiltrating lymphocytes with macrophages and tertiary lymphoid structures; (ii) massive tumor cell death—cholesterol clefts; and (iii) tissue repair—neovascularization and proliferative fibrosis (each feature enriched in major pathologic responders versus nonresponders, P  < 0.05). This distinct constellation of histologic findings was not identified in any pretreatment specimens. Histopathologic features of the regression bed were used to develop ‘Immune-Related Pathologic Response Criteria’ (irPRC), and these criteria were shown to be reproducible amongst pathologists. Specifically, %irRVT had improved interobserver consistency compared with %cRVT [median per-case %RVT variability 5% (0%–29%) versus 10% (0%–58%), P  = 0.007] and a twofold decrease in median standard deviation across pathologists within a sample (4.6 versus 2.2, P  = 0.002). Conclusions irPRC may be used to standardize pathologic assessment of immunotherapeutic efficacy. Long-term follow-up is needed to determine irPRC reliability as a surrogate for recurrence-free and overall survival.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial

                Bookmark

                Author and article information

                Journal
                Journal of Clinical Oncology
                JCO
                American Society of Clinical Oncology (ASCO)
                0732-183X
                1527-7755
                April 23 2020
                : JCO.20.00201
                Affiliations
                [1 ]Johns Hopkins Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
                [2 ]University of Washington, Seattle Cancer Care Alliance, Seattle, WA
                [3 ]Levine Cancer Institute, Atrium Healthcare, Charlotte, NC
                [4 ]Winship Cancer Institute of Emory University, Atlanta, GA
                [5 ]Université de Paris, INSERM U976, and Dermatology and CIC, AP-HP, Saint Louis Hospital, Paris, France
                [6 ]Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
                [7 ]Memorial Sloan Kettering Cancer Center, New York, NY
                [8 ]H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
                [9 ]SLK-Clinics, MOLIT Institute, Heilbronn, Germany
                [10 ]University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
                [11 ]University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
                [12 ]University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
                [13 ]Bristol Myers Squibb, Princeton, NJ
                Article
                10.1200/JCO.20.00201
                32324435
                59d9745d-2748-4a18-b8cd-ee4b37573a25
                © 2020
                History

                Comments

                Comment on this article