49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes ( SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.

          Author Summary

          Oomycete pathogens can infect many organisms relevant to the agriculture and aquaculture industries, such as potato and tomato, or fishes like salmon. Saprolegnia parasitica represents the most important oomycete fish pathogen that challenges the productivity of fish farms due to the lack of efficient methods for containing its development and pathogenicity. Enzymes involved in cell wall formation represent potential targets of anti-oomycete drugs. The isolation and full characterization of two genes involved in the biosynthesis of chitin, a quantitatively minor cell wall carbohydrate in Saprolegnia, was performed. Despite its low abundance, chitin was shown to play a key role in hyphal tip growth, which is a vital process for the micro-organism. The enzymes responsible for chitin biosynthesis were located at the apex of the hyphae and specifically inhibited by nikkomycin Z. The inhibitor provoked cell death by bursting of the hyphal tips. S. parasitica was more sensitive to the inhibitor than the model species Saprolegnia monoica used for these investigations. The data demonstrate the potential of targeting chitin synthases to control the diseases caused by S. parasitica and pave the way for the establishment of sustainable methods to tackle the adverse effects of the pathogen.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid isolation of high molecular weight plant DNA.

            A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Processing of gene expression data generated by quantitative real-time RT-PCR.

              Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2010
                August 2010
                26 August 2010
                : 6
                : 8
                : e1001070
                Affiliations
                [1 ]Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
                [2 ]Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
                [3 ]Department of Botany, Stockholm University, Stockholm, Sweden
                The Sainsbury Laboratory, United Kingdom
                Author notes

                Conceived and designed the experiments: GG MA QZ JF PHC VB. Performed the experiments: GG MA QZ JF PHC. Analyzed the data: GG MA QZ JF PHC VB. Wrote the paper: GG VB.

                Article
                10-PLPA-RA-2814R3
                10.1371/journal.ppat.1001070
                2928807
                20865175
                59cfea39-e676-4874-b98e-9d00dc76e100
                Guerriero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 March 2010
                : 26 July 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Biochemistry
                Biochemistry/Macromolecular Assemblies and Machines
                Biotechnology/Environmental Microbiology
                Cell Biology/Microbial Growth and Development
                Microbiology/Cellular Microbiology and Pathogenesis
                Molecular Biology
                Cell Biology/Extra-Cellular Matrix

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article