Processing math: 100%
25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCET approach to regularization-scheme dependence of QCD amplitudes

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate the regularization-scheme dependence of scattering amplitudes in massless QCD and find that the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED) are consistent at least up to NNLO in the perturbative expansion if renormalization is done appropriately. Scheme dependence is shown to be deeply linked to the structure of UV and IR singularities. We use jet and soft functions defined in soft-collinear effective theory (SCET) to efficiently extract the relevant anomalous dimensions in the different schemes. This result allows us to construct transition rules for scattering amplitudes between different schemes (CDR, HV, FDH, DRED) up to NNLO in massless QCD. We also show by explicit calculation that the hard, soft and jet functions in SCET are regularization-scheme independent.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: not found
          • Article: not found

          Automatic Feynman Graph Generation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Invariant Operators in Collinear Effective Theory

            We consider processes which produce final state hadrons whose energy is much greater than their mass. In this limit interactions involving collinear fermions and gluons are constrained by a symmetry, and we give a general set of rules for constructing leading and subleading invariant operators. Wilson coefficients C(mu,P) are functions of a label operator P, and do not commute with collinear fields. The symmetry is used to reproduce a two-loop result for factorization in B -> D pi in a simple way.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Soft-collinear effective theory and heavy-to-light currents beyond leading power

              An important unresolved question in strong interaction physics concerns the parameterization of power-suppressed long-distance effects to hard processes that do not admit an operator product expansion (OPE). Recently Bauer et al.\ have developed an effective field theory framework that allows one to formulate the problem of soft-collinear factorization in terms of fields and operators. We extend the formulation of soft-collinear effective theory, previously worked out to leading order, to second order in a power series in the inverse of the hard scale. We give the effective Lagrangian and the expansion of ``currents'' that produce collinear particles in heavy quark decay. This is the first step towards a theory of power corrections to hard processes where the OPE cannot be used. We apply this framework to heavy-to-light meson transition form factors at large recoil energy.
                Bookmark

                Author and article information

                Journal
                2015-06-17
                Article
                10.1007/JHEP01(2016)078
                1506.05301
                59c39b1a-cfe8-4ad3-be1b-c3b556f572f8

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                46 pages, 6 figures
                hep-ph

                High energy & Particle physics
                High energy & Particle physics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content388

                Cited by2

                Most referenced authors16