7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular and Cellular Bases of Lipodystrophy Syndromes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity.

          A cluster of risk factors for cardiovascular disease and type 2 diabetes mellitus, which occur together more often than by chance alone, have become known as the metabolic syndrome. The risk factors include raised blood pressure, dyslipidemia (raised triglycerides and lowered high-density lipoprotein cholesterol), raised fasting glucose, and central obesity. Various diagnostic criteria have been proposed by different organizations over the past decade. Most recently, these have come from the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. The main difference concerns the measure for central obesity, with this being an obligatory component in the International Diabetes Federation definition, lower than in the American Heart Association/National Heart, Lung, and Blood Institute criteria, and ethnic specific. The present article represents the outcome of a meeting between several major organizations in an attempt to unify criteria. It was agreed that there should not be an obligatory component, but that waist measurement would continue to be a useful preliminary screening tool. Three abnormal findings out of 5 would qualify a person for the metabolic syndrome. A single set of cut points would be used for all components except waist circumference, for which further work is required. In the interim, national or regional cut points for waist circumference can be used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What we talk about when we talk about fat.

            There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function. The past few years, in particular, have seen significant changes in the way that we classify adipocytes and how we view adipose development and differentiation. We have new perspective on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues. Finally, there has been significant progress in understanding how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome

              Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                03 January 2022
                2021
                : 12
                : 803189
                Affiliations
                [1] 1 Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN) , Paris, France
                [2] 2 Endocrinology Department, Assistance Publique–Hôpitaux de Paris, Saint–Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS) , Paris, France
                [3] 3 Assistance Publique–Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS) , Paris, France
                [4] 4 Genetics Department, Assistance Publique–Hôpitaux de Paris, La Pitié-Salpêtrière Hospital , Paris, France
                Author notes

                Edited by: Gaetano Santulli, Columbia University, United States

                Reviewed by: Giamila Fantuzzi, University of Illinois at Chicago, United States; Joan Villarroya, University of Barcelona, Spain

                *Correspondence: Corinne Vigouroux, corinne.vigouroux@ 123456inserm.fr

                This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2021.803189
                8763341
                35046902
                59888490-10e0-4c22-93de-4efbdadec7c3
                Copyright © 2022 Zammouri, Vatier, Capel, Auclair, Storey-London, Bismuth, Mosbah, Donadille, Janmaat, Fève, Jéru and Vigouroux

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 October 2021
                : 09 December 2021
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 138, Pages: 16, Words: 5753
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                lipodystrophy,insulin resistance,diabetes,adipose tissue,genetics,senescence,lipomatosis,immunity

                Comments

                Comment on this article