12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection

      , , ,
      Microorganisms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human papillomavirus (HPV) infection is the most common sexually transmitted infection (STI) worldwide. Although most HPV infections will spontaneously resolve, a considerable proportion of them will persist, increasing the risk of anogenital dysplasia, especially within certain populations, such as patients infected with human immunodeficiency virus (HIV). Furthermore, high-risk oncogenic HPV types (HR-HPV) are the main cause of cervix and other anogenital cancers, such as cancer of the vagina, vulva, penis, or anus. HIV and HPV coinfection is common among people living with HIV (PLWH) but disproportionally affects men who have sex with men (MSM) for whom the rate of persistent HPV infection and reinfection is noteworthy. The molecular interactions between HIV and HPV, as well as the interplay between both viruses and the immune system, are increasingly being understood. The immune dysfunction induced by HIV infection impairs the rate of HPV clearance and increases its oncogenic risk. Despite the availability of effective antiretroviral therapy (ART), the incidence of several HPV-related cancers is higher in PLWH, and the burden of persistent HPV-related disease has become a significant concern in an aging HIV population. Several public health strategies have been developed to reduce the transmission of HIV and HPV and mitigate the consequences of this type of coinfection. Universal HPV vaccination is the most effective preventive tool to reduce the incidence of HPV disease. In addition, screening programs for HPV-related cervical and vulvovaginal diseases in women are well-recognized strategies to prevent cervical cancer. Similarly, anal dysplasia screening programs are being implemented worldwide for the prevention of anal cancer among PLWH. Herein, the main epidemiological features and clinical implications of HIV and HPV coinfection are reviewed, focusing mainly on the relationship between HIV immune status and HPV-related diseases and the current strategies used to reduce the burden of HPV-related disease.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Cancer statistics, 2022

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer burden in the HIV-infected population in the United States.

              Effective antiretroviral therapy has reduced the risk of AIDS and dramatically prolonged the survival of HIV-infected people in the United States. Consequently, an increasing number of HIV-infected people are at risk of non-AIDS-defining cancers that typically occur at older ages. We estimated the annual number of cancers in the HIV-infected population, both with and without AIDS, in the United States. Incidence rates for individual cancer types were obtained from the HIV/AIDS Cancer Match Study by linking 15 HIV and cancer registries in the United States. Estimated counts of the US HIV-infected and AIDS populations were obtained from Centers for Disease Control and Prevention surveillance data. We obtained estimated counts of AIDS-defining (ie, Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer) and non-AIDS-defining cancers in the US AIDS population during 1991-2005 by multiplying cancer incidence rates and AIDS population counts, stratified by year, age, sex, race and ethnicity, transmission category, and AIDS-relative time. We tested trends in counts and standardized incidence rates using linear regression models. We multiplied overall cancer rates and HIV-only (HIV infected, without AIDS) population counts, available from 34 US states during 2004-2007, to estimate cancers in the HIV-only population. All statistical tests were two-sided. The US AIDS population expanded fourfold from 1991 to 2005 (96,179 to 413,080) largely because of an increase in the number of people aged 40 years or older. During 1991-2005, an estimated 79 656 cancers occurred in the AIDS population. From 1991-1995 to 2001-2005, the estimated number of AIDS-defining cancers decreased by greater than threefold (34,587 to 10,325 cancers; P(trend) < .001), whereas non-AIDS-defining cancers increased by approximately threefold (3193 to 10,059 cancers; P(trend) < .001). From 1991-1995 to 2001-2005, estimated counts increased for anal (206 to 1564 cancers), liver (116 to 583 cancers), prostate (87 to 759 cancers), and lung cancers (875 to 1882 cancers), and Hodgkin lymphoma (426 to 897 cancers). In the HIV-only population in 34 US states, an estimated 2191 non-AIDS-defining cancers occurred during 2004-2007, including 454 lung, 166 breast, and 154 anal cancers. Over a 15-year period (1991-2005), increases in non-AIDS-defining cancers were mainly driven by growth and aging of the AIDS population. This growing burden requires targeted cancer prevention and treatment strategies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                May 2022
                May 18 2022
                : 10
                : 5
                : 1047
                Article
                10.3390/microorganisms10051047
                35630489
                5975ffae-41b3-45b4-8a79-e5d4850759f0
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article