10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Microbial Populations in the Blood of Patients With Myocardial Infarction and Healthy Individuals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased bacterial translocation in the gut and bloodstream infections are both major comorbidities of heart failure and myocardial infarction (MI). However, the alterations in the microbiome of the blood of patients with MI remain unclear. To test this hypothesis, we conducted this case-control study to explore the microbiota compositions in the blood of Chinese patients with MI. Using high-throughput Illumina HiSeq sequencing targeting the V3–V4 region of the 16S ribosomal RNA (rRNA) gene, the microbiota communities in the blood of 29 patients with MI and 29 healthy controls were examined. In addition, the relationship between the blood microbiome and clinical features of MI was investigated. This study revealed a significant reduction in alpha diversity (Shannon index) in the MI group compared with the healthy controls. Also, a significant difference was detected in the structure and richness between the patients with MI and healthy controls. The members of the phylum Actinobacteria, class Actinobacteria, order Bifdobacteriales, family Bifidobacteriaceae, and genus Bifidobacterium were significantly abundant in the MI group, while the members of the phylum Bacteroidetes, class Bacteroidia, and order Bacteroidales were significantly enriched in the healthy controls ( p < 0.05). Moreover, the functional analysis revealed a significant variation between both groups. For instance, the enrichment of genes involved in the metabolism pathways of three amino acids decreased, that is, nucleotide transport and metabolism, coenzyme transport and metabolism, and lipid transport and metabolism, among others. Our study will contribute to a better knowledge of the microbiota of blood, which will further lead to improved MI diagnosis and therapy. Further study is needed to determine the role of the blood microbiota in human health and disease.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cutadapt removes adapter sequences from high-throughput sequencing reads

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FLASH: fast length adjustment of short reads to improve genome assemblies.

              Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 May 2022
                2022
                : 13
                : 845038
                Affiliations
                [1] 1School of Life Sciences, Lanzhou University , Lanzhou, China
                [2] 2School of Stomatology, Northwest Minzu University , Lanzhou, China
                [3] 3Department of Microbiology, Khyber Medical University Peshawar , Peshawar, Pakistan
                [4] 4Lanzhou University Second Hospital , Lanzhou, China
                Author notes

                Edited by: Edoardo Puglisi, Catholic University of the Sacred Heart, Italy

                Reviewed by: Pramod Kumar, National Institute of Cancer Prevention and Research (ICMR), India; Carmen María Haro, Institute for Sustainable Agriculture (CSIC), Spain

                *Correspondence: Li Zhiqiang Lizhiqiang6767@ 123456163.com

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.845038
                9176212
                35694288
                5912db78-1f8f-4b7c-aa04-99cb7e21f5ae
                Copyright © 2022 Khan, Khan, Kakakhel, Xiaowei, Ting, Ali, Fei, Jianye, Zhiqiang and Lizhe.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2021
                : 31 March 2022
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 65, Pages: 13, Words: 8509
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                blood circulation,bacteria,functional analysis,myocardial infarction,hiseq
                Microbiology & Virology
                blood circulation, bacteria, functional analysis, myocardial infarction, hiseq

                Comments

                Comment on this article