0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-stratified case-crossover studies for aggregated data in environmental epidemiology: a tutorial

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The case-crossover design is widely used in environmental epidemiology as an effective alternative to the conventional time-series regression design to estimate short-term associations of environmental exposures with a range of acute events. This tutorial illustrates the implementation of the time-stratified case-crossover design to study aggregated health outcomes and environmental exposures, such as particulate matter air pollution, focusing on adjusting covariates and investigating effect modification using conditional Poisson regression. Time-varying confounders can be adjusted directly in the conditional regression model accounting for the adequate lagged exposure–response function. Time-invariant covariates at the subpopulation level require reshaping the typical time-series data set into a long format and conditioning out the covariate in the expanded stratum set. When environmental exposure data are available at geographical units, the stratum set should combine time and spatial dimensions. Moreover, it is possible to examine effect modification using interaction models. The time-stratified case-crossover design offers a flexible framework to properly account for a wide range of covariates in environmental epidemiology studies.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

          The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μ m or less (PM 10 ) and fine PM with an aerodynamic diameter of 2.5 μ m or less (PM 2.5 ) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration–response curves from each city were pooled to allow global estimates to be derived. On average, an increase of 10 μ g per cubic meter in the 2-day moving average of PM 10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM 2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration–response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. Our data show independent associations between short-term exposure to PM 10 and PM 2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Time series regression studies in environmental epidemiology

            Time series regression studies have been widely used in environmental epidemiology, notably in investigating the short-term associations between exposures such as air pollution, weather variables or pollen, and health outcomes such as mortality, myocardial infarction or disease-specific hospital admissions. Typically, for both exposure and outcome, data are available at regular time intervals (e.g. daily pollution levels and daily mortality counts) and the aim is to explore short-term associations between them. In this article, we describe the general features of time series data, and we outline the analysis process, beginning with descriptive analysis, then focusing on issues in time series regression that differ from other regression methods: modelling short-term fluctuations in the presence of seasonal and long-term patterns, dealing with time varying confounding factors and modelling delayed (‘lagged’) associations between exposure and outcome. We finish with advice on model checking and sensitivity analysis, and some common extensions to the basic model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The case-crossover design: a method for studying transient effects on the risk of acute events.

              M Maclure (1991)
              A case-control design involving only cases may be used when brief exposure causes a transient change in risk of a rare acute-onset disease. The design resembles a retrospective nonrandomized crossover study but differs in having only a sample of the base population-time. The average incidence rate ratio for a hypothesized effect period following the exposure is estimable using the Mantel-Haenszel estimator. The duration of the effect period is assumed to be that which maximizes the rate ratio estimate. Self-matching of cases eliminates the threat of control-selection bias and increases efficiency. Pilot data from a study of myocardial infarction onset illustrate the control of within-individual confounding due to temporal association of exposures.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Epidemiol
                Int J Epidemiol
                ije
                International Journal of Epidemiology
                Oxford University Press
                0300-5771
                1464-3685
                April 2024
                20 February 2024
                20 February 2024
                : 53
                : 2
                : dyae020
                Affiliations
                Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC) , Barcelona, Spain
                Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
                School of Tropical Medicine and Global Health, Nagasaki University , Nagasaki, Japan
                Author notes
                Corresponding author. Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain. E-mail: aurelio.tobias@ 123456idaea.csic.es
                Author information
                https://orcid.org/0000-0001-6428-6755
                https://orcid.org/0000-0001-9067-2422
                Article
                dyae020
                10.1093/ije/dyae020
                10879751
                38380445
                58302b7e-06e5-4022-b857-d57c6ab573f9
                © The Author(s) 2024. Published by Oxford University Press on behalf of the International Epidemiological Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 31 March 2023
                : 18 January 2024
                : 29 January 2024
                Page count
                Pages: 5
                Funding
                Funded by: Japanese Society for the Promotion of Science;
                Categories
                Education Corner
                AcademicSubjects/MED00860

                Public health
                time-stratified case-crossover,environmental epidemiology,air pollution,conditional poisson regression

                Comments

                Comment on this article