30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, the toxicity of halogenated aromatic hydrocarbons (HAH) correlates with their ability to activate the aryl hydrocarbon receptor (AHR). To test this correlation in an avian model, we selected six HAHs based on their affinity for the mammalian AHR, including: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PCDD); 2,3,7,8-tetrachlorodibenzofuran (TCDF); 2,3,4,7,8-pentachlorodibenzofuran (PCDF); 3,3',4,4'-tetrachlorobiphenyl (PCB 77); and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153). We determined the ability of these compounds to induce cardiotoxicity, as measured by an increase in heart wet weight on incubation day 10 in the chick embryo (Gallus gallus) and formation of the avian AHR/ARNT/DNA binding complex in chicken hepatoma cells. Relative potency values (RPs) were calculated by dividing the TCDD EC(50) (AHR/ARNT/DNA binding) or ED(50) (15% increase in day-10 heart wet weight) by the HAH congeners EC(50) or ED(50), respectively. The rank order of potencies for inducing cardiotoxicity were TCDD > PCDD = PCDF = TCDF > PCDF > PCB77, PCB 153, no effect. The RP values for inducing AHR/ARNT DNA binding were then correlated with those for inducing cardiotoxicity (the RP values of PCDD were determined to be statistical outliers). This correlation was found to be highly significant (r = 0.94, p = 0.017). The ability of PCDD to act as an AHR agonist was verified using luciferase reporter assays and analysis of cytochrome P4501A1 protein levels. These results indicate that the ability of HAHs to activate the avian AHR signaling pathway, in general, correlates with their ability to mediate cardiotoxicity in the chick embryo.

          Related collections

          Author and article information

          Journal
          Toxicol Sci
          Toxicological sciences : an official journal of the Society of Toxicology
          Oxford University Press (OUP)
          1096-6080
          1096-0929
          May 2001
          : 61
          : 1
          Affiliations
          [1 ] Department of Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
          Article
          10.1093/toxsci/61.1.187
          11294989
          57f5fff6-5040-41e5-b917-7ca4861d28f1
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content187

          Cited by11