13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomimetic Polycaprolactone‐Graphene Oxide Composites for 3D Printing Bone Scaffolds

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone shows a radial gradient architecture with the exterior densified cortical bone and the interior porous cancellous bone. However, previous studies presented uniform designs for bone scaffolds that do not mimic natural bone's gradient structure. Hence, mimicking native bone structures is still challenging in bone tissue engineering. In this study, a novel biomimetic bone scaffold with Haversian channels is designed, which approximates mimicking the native bone structure. Also, the influence of adding graphene oxide (GO) to polycaprolactone (PCL)‐based scaffolds are investigated by preparing PCL/GO composite ink containing 0.25% and 0.75% GO and then 3D printing scaffolds by an extrusion‐based machine. Scanning electron microscopy (SEM) is used for morphological analysis. SEM reveals good printability and interconnected pore structure. The contact angle test shows that wettability reinforces with the increase of GO content. The mechanical behavior of the scaffolds under compression is examined numerically and experimentally. The results indicate that incorporation of GO can affect bone scaffolds' Young's modulus and von Mises stress distribution. Moreover, the biodegradation rates accelerate in the PCL/GO scaffolds. Biological characterizations, such as cell growth, viability, and attachment, are performed utilizing osteoblast cells. Compared to pure PCL, an enhancement is observed in cell viability in the PCL/GO scaffolds.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bone grafts and biomaterials substitutes for bone defect repair: A review

          Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone tissue engineering: state of the art and future trends.

            Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional (3D) printed scaffold and material selection for bone repair

              Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Macromolecular Materials and Engineering
                Macro Materials & Eng
                Wiley
                1438-7492
                1439-2054
                May 2023
                January 18 2023
                May 2023
                : 308
                : 5
                Affiliations
                [1 ] Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
                [2 ] Department of Engineering, School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK
                Article
                10.1002/mame.202200558
                577030be-0a94-42e7-a52f-299ff901589c
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article