2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traces of antibiotics within domestic and industrial effluents have toxic impact on human health as well as surrounding flora and fauna. Potential increase in antibiotic resistance of microorganisms is likely to rise due to the incomplete removal of antibiotics by traditional wastewater processing, methods such as membrane filtration and biological treatment. In this study, we investigated a novel class of material termed Polymer of Intrinsic Microporosity (PIM) that is based on amorphous microporous organic materials for the application of antibiotic removal form aqueous environments. The adsorption of four commonly used antibiotics (doxycycline, ciprofloxacin, penicillin G, and amoxicillin) was evaluated and found that at least 80% of the initial concentrations was eliminated under the optimized conditions. Langmuir and Freundlich models were then employed to correlate the equilibria data; the Freundlich model fit well the data in all cases. For kinetic data, pseudo-first and second order models were examined. Pseudo-second order model fit well the kinetic data and allowed the calculation of the adsorption rate constants. Thermodynamic parameters were obtained by conducting the adsorption studies at varied reaction temperatures. Surface potential, adsorption at various solution pHs, thermogravimetric analysis (TGA), Infrared spectroscopy (IR), and surface area experiments were conducted to draw possible adsorption mechanisms. The removal of antibiotics from water by PIM-1 is likely to be governed by both surface and pore-filling adsorption and could be facilitated by electrostatic interactions between the aromatic rings and charged functional groups as well as hydrogen bond formation between the adsorbent and adsorbate. Our work shows that the application of such novel microporous material could contribute to the removal of such challenging and persistent contaminants from wastewater with further optimizations of large-scale adsorption processes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Über die Adsorption in Lösungen

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

            The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interpenetrating Nets: Ordered, Periodic Entanglement

                Bookmark

                Author and article information

                Contributors
                mnajrani@kacst.edu.sa
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 January 2020
                21 January 2020
                2020
                : 10
                : 794
                Affiliations
                ISNI 0000 0000 8808 6435, GRID grid.452562.2, National Center for Irradiation Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology, ; P.O. Box 6086, Riyadh, 11442 Saudi Arabia
                Article
                57616
                10.1038/s41598-020-57616-4
                6972944
                31964938
                5722cf10-def5-4c7f-b7cc-e47ab6693801
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 February 2019
                : 4 December 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100004919, King Abdulaziz City for Science and Technology (KACST);
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                analytical chemistry,environmental chemistry,pollution remediation
                Uncategorized
                analytical chemistry, environmental chemistry, pollution remediation

                Comments

                Comment on this article