0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium and human health.

          Selenium is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant and anti-inflammatory effects to the production of active thyroid hormone. In the past 10 years, the discovery of disease-associated polymorphisms in selenoprotein genes has drawn attention to the relevance of selenoproteins to health. Low selenium status has been associated with increased risk of mortality, poor immune function, and cognitive decline. Higher selenium status or selenium supplementation has antiviral effects, is essential for successful male and female reproduction, and reduces the risk of autoimmune thyroid disease. Prospective studies have generally shown some benefit of higher selenium status on the risk of prostate, lung, colorectal, and bladder cancers, but findings from trials have been mixed, which probably emphasises the fact that supplementation will confer benefit only if intake of a nutrient is inadequate. Supplementation of people who already have adequate intake with additional selenium might increase their risk of type-2 diabetes. The crucial factor that needs to be emphasised with regard to the health effects of selenium is the inextricable U-shaped link with status; whereas additional selenium intake may benefit people with low status, those with adequate-to-high status might be affected adversely and should not take selenium supplements. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Food-chain selenium and human health: emphasis on intake.

            Following the publication of the landmark trial of Clark et al. in 1996 that appeared to show that Se could reduce the risk of cancer, awareness of the importance of Se to human health has markedly increased. As a result, there is now much more aggressive marketing of Se supplements and functional foods, even in situations where additional consumption of Se is inappropriate. The present review addresses how Se gets into the food chain, the wide variability in Se content of foods and the very different levels of intake between countries and regions. Though it is clear that there are adverse consequences for health of both deficient and excessive intake, health effects at intermediate levels of intake are less certain. Thus it is difficult to define optimal intake which depends on a large number of factors, such as which functions of Se are most relevant to a particular disease state, which species of Se is most prominent in the Se source, which health condition is being considered, the adequacy or otherwise of intake of other nutrients, the presence of additional stressors, and lastly whether the ability to make selenoproteins may be compromised. These complexities need to be understood, particularly by policy makers, in order to make informed judgments. Potential solutions for increasing Se intake, where required, include agronomic biofortification and genetic biofortification or, for individuals, increased intake of naturally Se-rich foods, functional foods or supplements. The difficulties of balancing the risks and benefits in relation to Se intake are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants

              Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                February 21 2024
                February 12 2024
                February 21 2024
                : 72
                : 7
                : 3388-3396
                Affiliations
                [1 ]College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
                [2 ]School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
                [3 ]Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
                [4 ]Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
                [5 ]Zhejiang Institute of Geosciences, Hangzhou, Zhejiang 310000, P. R. China
                [6 ]School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
                Article
                10.1021/acs.jafc.3c08116
                56c8b397-b5f2-4ebb-b93d-9a649c64df60
                © 2024

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article