9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organocatalytic cascade aza-Michael/hemiacetal reaction between disubstituted hydrazines and α,β-unsaturated aldehydes: Highly diastereo- and enantioselective synthesis of pyrazolidine derivatives

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The catalytic synthesis of nitrogen-containing heterocycles is of great importance to medicinal and synthetic chemists, and also a challenge for modern chemical methodology. In this paper, we report the synthesis of pyrazolidine derivatives through a domino aza-Michael/hemiacetal sequence with chiral or achiral secondary amines as organocatalysts. Thus, a series of achiral pyrazolidine derivatives were obtained with good yields (up to 90%) and high diastereoselectivities (>20:1) with pyrrolidine as an organocatalyst, and enantioenriched pyrazolidines are also achieved with good results (up to 86% yield, >10/1 regioselectivity, >20:1 dr, 99% ee) in the presence of ( S)-diphenylprolinol trimethylsilyl ether catalyst.

          Abstract

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          Asymmetric enamine catalysis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organocatalytic cascade reactions as a new tool in total synthesis.

            The total synthesis of natural products and biologically active compounds, such as pharmaceuticals and agrochemicals, has reached an extraordinary level of sophistication. We are, however, still far away from the 'ideal synthesis' and the state of the art is still frequently hampered by lengthy protecting-group strategies and costly purification procedures derived from the step-by-step protocols. In recent years several new criteria have been brought forward to solve these problems and to improve total synthesis: atom, step and redox economy or protecting-group-free synthesis. Over the past decade the research area of organocatalysis has rapidly grown to become a third pillar of asymmetric catalysis standing next to metal and biocatalysis, thus paving the way for a new and powerful strategy that can help to address these issues - organocatalytic cascade reactions. In this Review we present the first applications of such asymmetric organocascade reactions to the total synthesis of natural products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asymmetric organocatalytic domino reactions.

              The current status of organic synthesis is hampered by costly protecting-group strategies and lengthy purification procedures after each synthetic step. To circumvent these problems, the synthetic potential of multicomponent domino reactions has been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process. In particular, domino reactions mediated by organocatalysts are in a way biomimetic, as this principle is used very efficiently in the biosynthesis of complex natural products starting from simple precursors. In this Minireview, we discuss the current development of this fast-growing field.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2012
                9 October 2012
                : 8
                : 1710-1720
                Affiliations
                [1 ]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China; Fax: +86 (0)512 65880378; Tel: +86 (0)512 65880378
                Article
                10.3762/bjoc.8.195
                3511004
                23209504
                5673b051-8bf0-4329-b90f-f12c64d979c4
                Copyright © 2012, Geng et al; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)

                History
                : 28 June 2012
                : 6 September 2012
                Categories
                Full Research Paper
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                aza-michael,domino,hydrazine,organocatalysis,pyrazolidine
                Organic & Biomolecular chemistry
                aza-michael, domino, hydrazine, organocatalysis, pyrazolidine

                Comments

                Comment on this article