70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA silencing is a highly conserved pathway in the network of interconnected defense responses that are activated during viral infection. As a counter-defense, many plant viruses encode proteins that block silencing, often also interfering with endogenous small RNA pathways. However, the mechanism of action of viral suppressors is not well understood and the role of host factors in the process is just beginning to emerge. Here we report that the ethylene-inducible transcription factor RAV2 is required for suppression of RNA silencing by two unrelated plant viral proteins, potyvirus HC-Pro and carmovirus P38. Using a hairpin transgene silencing system, we find that both viral suppressors require RAV2 to block the activity of primary siRNAs, whereas suppression of transitive silencing is RAV2-independent. RAV2 is also required for many HC-Pro-mediated morphological anomalies in transgenic plants, but not for the associated defects in the microRNA pathway. Whole genome tiling microarray experiments demonstrate that expression of genes known to be required for silencing is unchanged in HC-Pro plants, whereas a striking number of genes involved in other biotic and abiotic stress responses are induced, many in a RAV2-dependent manner. Among the genes that require RAV2 for induction by HC-Pro are FRY1 and CML38, genes implicated as endogenous suppressors of silencing. These findings raise the intriguing possibility that HC-Pro-suppression of silencing is not caused by decreased expression of genes that are required for silencing, but instead, by induction of stress and defense responses, some components of which interfere with antiviral silencing. Furthermore, the observation that two unrelated viral suppressors require the activity of the same factor to block silencing suggests that RAV2 represents a control point that can be readily subverted by viruses to block antiviral silencing.

          Author Summary

          RNA silencing is an important antiviral defense in plants, and many plant viruses encode proteins that block RNA silencing. However, the mechanism of action of the viral suppressors is complex, and little is known about the role of host plant proteins in the process. Here we report the first example of a host protein that plays a required role in viral suppression of silencing—a transcription factor called RAV2 that is required for suppression of silencing by two different and unrelated viral proteins. Analysis of plant gene expression patterns shows that RAV2 is required for induction of many genes involved in other stress and defense pathways, including genes implicated as plant suppressors of silencing. Overall, the results suggest that RAV2 is an important factor in viral suppression of silencing and that the role of RAV2 is to divert host defenses toward responses that interfere with antiviral silencing.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.

            MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes

              In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2010
                January 2010
                15 January 2010
                : 6
                : 1
                : e1000729
                Affiliations
                [1 ]Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
                [2 ]Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
                [3 ]Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
                University of California Riverside, United States of America
                Author notes
                [¤]

                Current address: Department of Biology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

                Conceived and designed the experiments: JRE LHB VV. Performed the experiments: MWE BDG ZG AWF SM XG. Analyzed the data: MWE BDG GJP LHB VV. Contributed reagents/materials/analysis tools: JRE. Wrote the paper: MWE GJP VV.

                Article
                09-PLPA-RA-1356R3
                10.1371/journal.ppat.1000729
                2800190
                20084269
                566a2040-ac81-4ef0-9ec2-eb6560217932
                Endres et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 August 2009
                : 15 December 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Molecular Biology
                Molecular Biology/mRNA Stability
                Plant Biology
                Plant Biology/Plant Growth and Development
                Plant Biology/Plant-Biotic Interactions
                Virology
                Virology/Effects of Virus Infection on Host Gene Expression
                Virology/Host Antiviral Responses
                Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics
                Virology/Virulence Factors and Mechanisms

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article