11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Supplementation With a New Therapeutic Oxygen Carrier Reduces Chronic Fibrosis and Organ Dysfunction in Kidney Static Preservation : A New O2 Therapeutic Molecule Improves Static Kidney Preservation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Static preservation is currently the most widely used organ preservation strategy; however, decreased donor organ quality is impacting outcome negatively. M101 is an O₂ carrier with high-oxygen affinity and the capacity to function at low temperatures. We tested the benefits of M101 both in vitro, on cold preserved LLC-PK1, as well as in vivo, in a large white pig kidney autotransplantation model. In vitro, M101 supplementation reduced cold storage-induced cell death. In vivo, early follow-up demonstrated superiority of M101-supplemented solutions, lowering the peak of serum creatinine and increasing the speed of function recovery. On the longer term, supplementation with M101 reduced kidney inflammation levels and maintained structural integrity, particularly with University of Wisconsin (UW). At the end of the 3-month follow-up, M101 supplementation proved beneficial in terms of survival and function, as well as slowing the advance of interstitial fibrosis. We show that addition of M101 to classic organ preservation protocols with UW and Histidine-Tryptophane-Ketoglutarate, the two most widely used solutions worldwide in kidney preservation, provides significant benefits to grafts, both on early function recovery and outcome. Simple supplementation of the solution with M101 is easily translatable to the clinic and shows promises in terms of outcome.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Oxygen-derived free radicals in postischemic tissue injury.

          J M McCord (1985)
          It is now clear that oxygen-derived free radicals play an important part in several models of experimentally induced reperfusion injury. Although there are certainly multiple components to clinical ischemic and reperfusion injury, it appears likely that free-radical production may make a major contribution at certain stages in the progression of the injury. The primary source of superoxide in reperfused reoxygenated tissues appears to be the enzyme xanthine oxidase, released during ischemia by a calcium-triggered proteolytic attack on xanthine dehydrogenase. Reperfused tissues are protected in a variety of laboratory models by scavengers of superoxide radicals or hydroxyl radicals or by allopurinol or other inhibitors of xanthine oxidase. Dysfunction induced by free radicals may thus be a major component of ischemic diseases of the heart, bowel, liver, kidney, and brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Machine perfusion or cold storage in deceased-donor kidney transplantation.

            Static cold storage is generally used to preserve kidney allografts from deceased donors. Hypothermic machine perfusion may improve outcomes after transplantation, but few sufficiently powered prospective studies have addressed this possibility. In this international randomized, controlled trial, we randomly assigned one kidney from 336 consecutive deceased donors to machine perfusion and the other to cold storage. All 672 recipients were followed for 1 year. The primary end point was delayed graft function (requiring dialysis in the first week after transplantation). Secondary end points were the duration of delayed graft function, delayed graft function defined by the rate of the decrease in the serum creatinine level, primary nonfunction, the serum creatinine level and clearance, acute rejection, toxicity of the calcineurin inhibitor, the length of hospital stay, and allograft and patient survival. Machine perfusion significantly reduced the risk of delayed graft function. Delayed graft function developed in 70 patients in the machine-perfusion group versus 89 in the cold-storage group (adjusted odds ratio, 0.57; P=0.01). Machine perfusion also significantly improved the rate of the decrease in the serum creatinine level and reduced the duration of delayed graft function. Machine perfusion was associated with lower serum creatinine levels during the first 2 weeks after transplantation and a reduced risk of graft failure (hazard ratio, 0.52; P=0.03). One-year allograft survival was superior in the machine-perfusion group (94% vs. 90%, P=0.04). No significant differences were observed for the other secondary end points. No serious adverse events were directly attributable to machine perfusion. Hypothermic machine perfusion was associated with a reduced risk of delayed graft function and improved graft survival in the first year after transplantation. (Current Controlled Trials number, ISRCTN83876362.) 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying specific causes of kidney allograft loss.

              The causes of kidney allograft loss remain unclear. Herein we investigated these causes in 1317 conventional kidney recipients. The cause of graft loss was determined by reviewing clinical and histologic information the latter available in 98% of cases. During 50.3 +/- 32.6 months of follow-up, 330 grafts were lost (25.0%), 138 (10.4%) due to death with function, 39 (2.9%) due to primary nonfunction and 153 (11.6%) due to graft failure censored for death. The latter group was subdivided by cause into: glomerular diseases (n = 56, 36.6%); fibrosis/atrophy (n = 47, 30.7%); medical/surgical conditions (n = 25, 16.3%); acute rejection (n = 18, 11.8%); and unclassifiable (n = 7, 4.6%). Glomerular pathologies leading to failure included recurrent disease (n = 23), transplant glomerulopathy (n = 23) and presumed nonrecurrent disease (n = 10). In cases with fibrosis/atrophy a specific cause(s) was identified in 81% and it was rarely attributable to calcineurin inhibitor (CNI) toxicity alone (n = 1, 0.7%). Contrary to current concepts, most cases of kidney graft loss have an identifiable cause that is not idiopathic fibrosis/atrophy or CNI toxicity. Glomerular pathologies cause the largest proportion of graft loss and alloinmunity remains the most common mechanism leading to failure. This study identifies targets for investigation and intervention that may result in improved kidney transplantation outcomes.
                Bookmark

                Author and article information

                Journal
                American Journal of Transplantation
                Wiley
                16006135
                September 2011
                September 2011
                August 22 2011
                : 11
                : 9
                : 1845-1860
                Article
                10.1111/j.1600-6143.2011.03614.x
                21875432
                55efb356-f47e-40c0-9d06-cb818ecfa81e
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article