27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA sequencing uncovers the key microRNAs potentially contributing to sudden sensorineural hearing loss

      research-article
      , MD, PhD , , MD, PhD, , MD, PhD, , MD, PhD, , MD, PhD, , MM
      Medicine
      Wolters Kluwer Health
      differentially expressed microRNAs, RNA sequencing, sudden sensorineural hearing loss, target genes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to identify miRNAs that may contribute to the pathogenesis of sudden sensorineural hearing loss (SSNHL) by RNA-seq (RNA-sequencing).

          RNA was extracted from SSNHL patients and healthy volunteers, respectively. Sequencing was performed on HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differential expression analysis of miRNAs between the SSNHL samples and the normal samples was performed using DEseq to identify differentially expressed microRNAs (DEMs). The target genes of the DEMs were predicted using the online tool miRWalk, which were then mapped to DAVID ( https://david.ncifcrf.gov/) for functional annotation based on GO database and for pathway enrichment analysis based on KEGG. Finally, a miRNA-target-protein-protein interaction (PPIs) network was constructed using the DEMs and their target genes with interaction.

          Differential expression analysis reveals 24 DEMs between the SSNHL group and control group. A total of 1083 target genes were predicted. GO functional annotation analysis reveals that the target genes in the top 10 terms are mainly related to the development of salivary glands, neurotransmission, dendritic development, and other processes. KEGG pathway enrichment analysis reveals that the target genes were functionally enriched in pathways arachidonic acid metabolism, complement and coagulation cascades, linoleic acid metabolism, and MAPK signaling pathway. In the miRNA-target-PPI network, hsa-miR-34a/548n/15a/143/23a/210/1255a/18b/ /1180/99b had the most target genes; genes YWHAG, GSK3B, CDC42, NR3C1, LCK, UNC119, SIN3A, and NFKB2, interact with most other genes among all the predicted target genes.

          Hsa-miR-34a/15a/23a/210/18b/548n/143 is likely to have a role in the pathogenesis of SSNHL.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss.

          MicroRNAs (miRNAs) bind to complementary sites in their target mRNAs to mediate post-transcriptional repression, with the specificity of target recognition being crucially dependent on the miRNA seed region. Impaired miRNA target binding resulting from SNPs within mRNA target sites has been shown to lead to pathologies associated with dysregulated gene expression. However, no pathogenic mutations within the mature sequence of a miRNA have been reported so far. Here we show that point mutations in the seed region of miR-96, a miRNA expressed in hair cells of the inner ear, result in autosomal dominant, progressive hearing loss. This is the first study implicating a miRNA in a mendelian disorder. The identified mutations have a strong impact on miR-96 biogenesis and result in a significant reduction of mRNA targeting. We propose that these mutations alter the regulatory role of miR-96 in maintaining gene expression profiles in hair cells required for their normal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice

            Progressive hearing loss is common in the human population, but little is known about the molecular basis. We report a new ENU-induced mouse mutant, diminuendo, with a single base change in the seed region of Mirn96. Heterozygotes show progressive loss of hearing and hair cell anomalies, while homozygotes have no cochlear responses. Most microRNAs are believed to downregulate target genes by binding to specific sites on their mRNAs, so mutation of the seed should lead to target gene upregulation. Microarray analysis revealed 96 transcripts with significantly altered expression in homozygotes; notably, Slc26a5, oncomodulin, Gfi1, Ptprq and Pitpnm1 were downregulated. Hypergeometric p-value analysis showed hundreds of genes were upregulated in mutants. Different genes, with target sites complementary to the mutant seed, were downregulated. This is the first microRNA found associated with deafness, and diminuendo represents a model for understanding and potentially moderating progressive hair cell degeneration in hearing loss more generally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data

              miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star.
                Bookmark

                Author and article information

                Journal
                Medicine (Baltimore)
                Medicine (Baltimore)
                MEDI
                Medicine
                Wolters Kluwer Health
                0025-7974
                1536-5964
                November 2017
                27 November 2017
                : 96
                : 47
                : e8837
                Affiliations
                Department of Otolaryngology—Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.
                Author notes
                []Correspondence: Qi Li, Department of Otolaryngology—Head and Neck Surgery, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, P.R. China (e-mail: hxllq@ 123456126.com ).
                Article
                MD-D-16-07621 08837
                10.1097/MD.0000000000008837
                5708990
                29381991
                55d4d15f-88db-4afc-8e67-11052f68ebf8
                Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc.

                This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0

                History
                : 20 December 2016
                : 16 August 2017
                : 1 November 2017
                Categories
                6000
                Research Article
                Quality Improvement Study
                Custom metadata
                TRUE

                differentially expressed micrornas,rna sequencing,sudden sensorineural hearing loss,target genes

                Comments

                Comment on this article