5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated Ozone Concentration and Nitrogen Addition Increase Poplar Rust Severity by Shifting the Phyllosphere Microbial Community

      , , , ,
      Journal of Fungi
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tropospheric ozone and nitrogen deposition are two major environmental pollutants. A great deal of research has focused on the negative impacts of elevated O3 and the complementary effect of soil N addition on the physiological properties of trees. However, it has been overlooked how elevated O3 and N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host–pathogen–environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust [Melampsora larici-populina] severity of two susceptible hybrid poplars [clone ‘107’: Populus euramericana cv. ‘74/76’; clone ‘546’: P. deltoides Í P. cathayana] in Free-Air-Controlled-Environment plots, in addition, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone ‘107’ significantly increased under elevated O3 or N addition only; however, the negative impact of elevated O3 could be significantly mitigated when accompanied by N addition, likewise, this trade-off was reflected in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, rust severity of clone ‘546’ did not differ significantly in the cases of elevated O3 and N addition. Mlp infection altered microbial community composition and increased its sensitivity to elevated O3, as determined by the markedly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings suggest that poplars require a changing phyllosphere microbial associations to optimize plant immunity in response to environmental changes.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new method for non-parametric multivariate analysis of variance

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                JFOUCU
                Journal of Fungi
                JoF
                MDPI AG
                2309-608X
                May 2022
                May 18 2022
                : 8
                : 5
                : 523
                Article
                10.3390/jof8050523
                35628778
                55a58cdd-83b3-4971-965c-f65415970ea5
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article