51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Allelic Variants Relate to Shifts in Faecal Microbiota of Cystic Fibrosis Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator ( CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age.

          Methods

          Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure.

          Results

          Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species ( Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species ( Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced.

          Conclusions

          This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a ‘systemic disease’, linking the lung and the gut in a joined axis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases.

          Abnormal host-microbe interactions are implicated in the pathogenesis of inflammatory bowel diseases. Previous 16S rRNA sequence analysis of intestinal tissues demonstrated that a subset of Crohn's disease (CD) and ulcerative colitis (UC) samples exhibited altered intestinal-associated microbial compositions characterized by depletion of Bacteroidetes and Firmicutes (particularly Clostridium taxa). We hypothesize that NOD2 and ATG16L1 risk alleles may be associated with these alterations. To test this hypothesis, we genotyped 178 specimens collected from 35 CD, 35 UC, and 54 control patients for the three major NOD2 risk alleles (Leu 1007fs, R702W, and G908R) and the ATG16L1T300A risk allele, that had undergone previous 16S rRNA sequence analysis. Our statistical models incorporated the following independent variables: 1) disease phenotype (CD, UC, non-IBD control); 2) NOD2 composite genotype (NOD2(R) = at least one risk allele, NOD2(NR) = no risk alleles); 3) ATG16L1T300A genotype (ATG16L1(R/R), ATG16L1(R/NR), ATG16L1(NR/NR)); 4) patient age at time of surgery and all first-order interactions. The dependent variable(s) were the relative frequencies of bacterial taxa classified by applying the RDP 2.1 classifier to previously reported 16S rRNA sequence data. Disease phenotype, NOD2 composite genotype and ATG16L1 genotype were significantly associated with shifts in microbial compositions by nonparametric multivariate analysis of covariance (MANCOVA). Shifts in the relative frequencies of Faecalibacterium and Escherichia taxa were significantly associated with disease phenotype by nonparametric ANCOVA. These results support the concept that disease phenotype and genotype are associated with compositional changes in intestinal-associated microbiota. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New IBD genetics: common pathways with other diseases.

            Complex disease genetics has been revolutionised in recent years by the advent of genome-wide association (GWA) studies. The chronic inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis have seen notable successes culminating in the discovery of 99 published susceptibility loci/genes (71 Crohn's disease; 47 ulcerative colitis) to date. Approximately one-third of loci described confer susceptibility to both Crohn's disease and ulcerative colitis. Amongst these are multiple genes involved in IL23/Th17 signalling (IL23R, IL12B, JAK2, TYK2 and STAT3), IL10, IL1R2, REL, CARD9, NKX2.3, ICOSLG, PRDM1, SMAD3 and ORMDL3. The evolving genetic architecture of IBD has furthered our understanding of disease pathogenesis. For Crohn's disease, defective processing of intracellular bacteria has become a central theme, following gene discoveries in autophagy and innate immunity (associations with NOD2, IRGM, ATG16L1 are specific to Crohn's disease). Genetic evidence has also demonstrated the importance of barrier function to the development of ulcerative colitis (HNF4A, LAMB1, CDH1 and GNA12). However, when the data are analysed in more detail, deeper themes emerge including the shared susceptibility seen with other diseases. Many immune-mediated diseases overlap in this respect, paralleling the reported epidemiological evidence. However, in several cases the reported shared susceptibility appears at odds with the clinical picture. Examples include both type 1 and type 2 diabetes mellitus. In this review we will detail the presently available data on the genetic overlap between IBD and other diseases. The discussion will be informed by the epidemiological data in the published literature and the implications for pathogenesis and therapy will be outlined. This arena will move forwards very quickly in the next few years. Ultimately, we anticipate that these genetic insights will transform the landscape of common complex diseases such as IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis.

              Sequence heterogeneities in 16S rRNA genes from individual strains of Paenibacillus polymyxa were detected by sequence-dependent separation of PCR products by temperature gradient gel electrophoresis (TGGE). A fragment of the 16S rRNA genes, comprising variable regions V6 to V8, was used as a target sequence for amplifications. PCR products from P. polymyxa (type strain) emerged as a well-defined pattern of bands in the gradient gel. Six plasmids with different inserts, individually demonstrating the migration characteristics of single bands of the pattern, were obtained by cloning the PCR products. Their sequences were analyzed as a representative sample of the total heterogeneity. An amount of 10 variant nucleotide positions in the fragment of 347 bp was observed, with all substitutions conserving the relevant secondary structures of the V6 and V8 regions in the RNA molecules. Hybridizations with specifically designed probes demonstrated different chromosomal locations of the respective rRNA genes. Amplifications of reverse-transcribed rRNA from ribosome preparations, as well as whole-cell hybridizations, revealed a predominant representation of particular sequences in ribosomes of exponentially growing laboratory cultures. Different strains of P. polymyxa showed not only remarkably differing patterns of PCR products in TGGE analysis but also discriminative whole-cell labeling with the designed oligonucleotide probes, indicating the different representation of individual sequences in active ribosomes. Our results demonstrate the usefulness of TGGE for the structural analysis of heterogeneous rRNA genes together with their expression, stress problems of the generation of meaningful data for 16S rRNA sequences and probe designs, and might have consequences for evolutionary concepts.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                17 April 2013
                : 8
                : 4
                : e61176
                Affiliations
                [1 ]Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
                [2 ]Regional Cystic Fibrosis Centre, Paediatrics and Infant Neuropsychiatry Department, ‘Sapienza’ University of Rome, Rome, Italy
                [3 ]Department of Haematology and Cellular Biotechnologies, Sapienza University of Rome, Rome, Italy
                Johns Hopkins School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VI SS. Performed the experiments: VI FS AG. Analyzed the data: VI. Contributed reagents/materials/analysis tools: RDB AS SB ML MPC SQ. Wrote the paper: VI SS.

                Article
                PONE-D-12-33343
                10.1371/journal.pone.0061176
                3629184
                23613805
                5588819c-9c96-4200-bba1-deab4054d0a0
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 October 2012
                : 5 March 2013
                Page count
                Pages: 12
                Funding
                This study was funded by Cystic Fibrosis Lazio Regional Center, Italy, and MIUR Italian Minister for Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Microbial Ecology
                Genetics
                Human Genetics
                Autosomal Recessive
                Cystic Fibrosis
                Genetic Mutation
                Genetics of Disease
                Microbiology
                Bacterial Pathogens
                Escherichia Coli
                Applied Microbiology
                Medical Microbiology
                Microbial Ecology
                Medicine
                Clinical Genetics
                Autosomal Recessive
                Cystic Fibrosis
                Gastroenterology and Hepatology
                Pediatric Gastroenterology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content512

                Cited by35

                Most referenced authors738