9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex and Age Differences in Motion Sickness in Rats: The Correlation with Blood Hormone Responses and Neuronal Activation in the Vestibular and Autonomic Nuclei

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many studies have demonstrated sex and age differences in motion sickness, but the underlying physiological basis is still in controversy. In the present study, we tried to investigate the potential correlates of endocrine and/or neuronal activity with sex and age differences in rats with motion sickness. LiCl-induced nausea symptom was evaluated by conditioned gaping. Motion sickness was assessed by measurement of autonomic responses (i.e., conditioned gaping and defecation responses), motor impairments (i.e., hypoactivity and balance disturbance) after Ferris wheel-like rotation, and blood hormone levels and central Fos protein expression was also observed. We found that rotation-induced conditioned gaping, defecation responses and motor disorders were significantly attenuated in middle-aged animals (13- and 14-month-age) compared with adolescents (1- and 2-month-age) and young-adults (4- and/or 5-month-age). LiCl-induced conditioned gapings were also decreased with age, but was less pronounced than rotation-induced ones. Females showed greater responses in defecation and spontaneous locomotor activity during adolescents and/or young-adult period. Blood adrenocorticotropic hormone and corticosterone significantly increased in 4-month-old males after rotation compared with static controls. No significant effect of rotation was observed in norepinephrine, epinephrine, β-endorphin and arginine-vasopressin levels. The middle-aged animals (13-month-age) also had higher number of rotation-induced Fos-labeled neurons in the spinal vestibular nucleus, the parabrachial nucleus (PBN), the central and medial nucleus of amygdala (CeA and MeA) compared with adolescents (1-month-age) and young-adults (4-month-age) and in the nucleus of solitary tract (NTS) compared with adolescents (1-month-age). Sex difference in rotation-induced Fos-labeling was observed in the PBN, the NTS, the locus ceruleus and the paraventricular hypothalamus nucleus at 4 and/or 13 months of age. These results suggested that the sex and age differences in motion sickness may not correlate with stress hormone responses and habituation. The age-dependent decline in motion sickness susceptibility might be mainly attributed to the neuronal activity changes in vestibulo-autonomic pathways contributing to homeostasis regulation during motion sickness.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Sex differences in depression and anxiety disorders: potential biological determinants.

          The phenomenon of higher rates of affective disorders in women illustrates many of the difficulties as well as promises of translating preclinical models to human disorders. Abnormalities in the regulation of the hypothalamic-pituitary adrenal axis and the sympathoadrenomedullary system have been identified in depression and anxiety disorders, and these disorders are clearly precipitated and exacerbated by stress. Despite the striking sex difference in the prevalence of depression and anxiety disorders, attempts to identify corresponding sex differences in stress response reactivity in animal models have met with limited success. Processes which may contribute to increased rates of affective disorders in women are greater fluxes in reproductive hormones across the life span, and increased sensitivity to catecholamine augmentation of emotional memory consolidation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            International antiemetic guidelines on chemotherapy induced nausea and vomiting (CINV): content and implementation in daily routine practice.

            Over the past decades major improvements in the management of chemotherapy induced nausea and vomiting (CINV) were obtained. With the correct use of antiemetic drugs, CINV can be prevented in almost 70%, and even up to, 80% of patients. Treatment guidelines enable physicians to integrate the latest clinical research into their daily practice. The large volume of rapidly evolving clinical data has been summarised and incorporated into treatment recommendations by well-known and reliable institutions. These organisations include the Multinational Association of Supportive Care in Cancer (MASCC), the European Society of Medical Oncology (ESMO), the American Society for Clinical Oncology (ASCO), and National Comprehensive Cancer Network (NCCN). However, despite the availability of these guidelines, there is an emerging evidence that adherence to, and implementation of, treatment recommendations is less than optimal. This review will especially focus on the content of the current antiemetic guidelines and will address the important question of how these guidelines are implemented in routine practice. © 2013 Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motion sickness susceptibility.

              Motion sickness can be caused by a variety of motion environments (e.g., cars, boats, planes, tilting trains, funfair rides, space, virtual reality) and given a sufficiently provocative motion stimulus almost anyone with a functioning vestibular system can be made motion sick. Current hypotheses of the 'Why?' of motion sickness are still under investigation, the two most important being 'toxin detector' and the 'vestibular-cardiovascular reflex'. By contrast, the 'How?' of motion sickness is better understood in terms of mechanisms (e.g., 'sensory conflict' or similar) and stimulus properties (e.g., acceleration, frequency, duration, visual-vestibular time-lag). Factors governing motion sickness susceptibility may be divided broadly into two groups: (i) those related to the stimulus (motion type and provocative property of stimulus); and (ii) those related to the individual person (habituation or sensitisation, individual differences, protective behaviours, administration of anti-motion sickness drugs). The aim of this paper is to review some of the more important factors governing motion sickness susceptibility, with an emphasis on the personal rather than physical stimulus factors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                15 February 2017
                2017
                : 9
                : 29
                Affiliations
                [1]Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai China
                Author notes

                Edited by: Filippo Tempia, University of Turin, Italy

                Reviewed by: Frederick Robert Carrick, Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, UK; Klaus-Peter Ossenkopp, University of Western Ontario, Canada

                *Correspondence: Yiling Cai, yilingcai1@ 123456sohu.com

                These authors are co-authors.

                Article
                10.3389/fnagi.2017.00029
                5309225
                28261089
                54e331f5-b7e7-4ddb-b492-f8ed26ab3b46
                Copyright © 2017 Zhou, Wang, Pan, Qi, Liu, Liu and Cai.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 October 2016
                : 03 February 2017
                Page count
                Figures: 10, Tables: 1, Equations: 0, References: 96, Pages: 14, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Neuroscience
                Original Research

                Neurosciences
                motion sickness,sex and age differences,behavior response,stress hormone,fos protein
                Neurosciences
                motion sickness, sex and age differences, behavior response, stress hormone, fos protein

                Comments

                Comment on this article