Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncertainty in Projected Critical Soil Moisture Values in CMIP6 Affects the Interpretation of a More Moisture‐Limited World

      1 , 2 , 1 , 3
      Earth's Future
      American Geophysical Union (AGU)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evaporation is controlled by soil moisture (SM) availability when conditions are not extremely wet. In such a moisture‐limited regime, land‐atmosphere coupling is active, and a chain of linked processes allow land surface anomalies to affect weather and climate. How frequently any location is in a moisture‐limited regime largely determines the intensity of land feedbacks on climate. Conventionally this has been quantified by shifting probability distributions of SM, but the boundary between moisture‐limited and energy‐limited regimes, called the critical soil moisture (CSM) value, can also change. CSM is an emergent property of the land‐atmosphere system, determined by the balance of radiative, thermal and kinetic energy factors. We propose a novel framework to separate the contributions of these separate effects on the likelihood that SM lies in the moisture‐limited regime. We confirm that global warming leads to a more moisture‐limited world. This is attributed to reduced SM in most regions: the moisture effect. CSM changes mainly due to shifts in the surface energy budget, significantly affecting 27.7% of the globe in analyzed climate change simulations. However, consistency among Earth system models regarding CSM change is low. The poor agreement hints that variability of CSM in models and the factors that determine CSM are not well represented. The fidelity of CSM in Earth system models has been overlooked as a factor in water cycle projections. Careful assessment of CSM in nature and for model development should be a priority, with potential benefits for multiple research fields including meteorology, hydrology, and ecology.

          Plain Language Summary

          In the water cycle, moisture‐limited conditions exist when evaporation is limited by a lack of soil moisture. This occurs when soil moisture lies below a threshold called the critical soil moisture (CSM). As evaporation affects atmospheric temperature and humidity, the value of CSM is important for weather and climate, as it determines when land states can affect the atmosphere. Climate change simulations agree the world will become more moisture‐limited, mainly attributed to drying soils, but the value of CSM can also change because it is determined in part by local meteorology as part of a land‐atmosphere feedback. This study shows that simulations from different climate change models consistently agree on an overall drying of the soil in the future. Changes in CSM are also simulated, but Earth system models do not agree on the magnitude or direction of CSM change in most places. This disagreement introduces uncertainty in the places and times when soil moisture controls evaporation and its impact on the atmosphere. Models have not historically been calibrated or validated for CSM simulation; we advocate for more attention to be paid to observing and modeling CSM due to its importance for meteorology, hydrology, and ecology in a changing climate.

          Key Points

          • An increasingly moisture‐limited world under global warming depends on more than just reduced soil moisture

          • Earth system models inconsistently simulate the critical soil moisture value that separates moisture‐limited and energy‐limited regimes

          • Poor agreement among models on projected changes in critical soil moisture calls for greater focus on its observation and validation

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating the Dimension of a Model

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

            By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

              The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
                Bookmark

                Author and article information

                Contributors
                Journal
                Earth's Future
                Earth's Future
                American Geophysical Union (AGU)
                2328-4277
                2328-4277
                June 2023
                May 31 2023
                June 2023
                : 11
                : 6
                Affiliations
                [1 ] George Mason University Fairfax VA USA
                [2 ] Princeton University Princeton NJ USA
                [3 ] Center for Ocean‐Land‐Atmosphere Studies George Mason University Fairfax VA USA
                Article
                10.1029/2023EF003511
                54537ba9-f8e1-4460-a7af-f9c77503bf0c
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content24

                Cited by1

                Most referenced authors724