119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already approved pesticides and the approval of the new compounds in the near future. Thus, new tools or techniques with greater reliability than those already existing are needed to predict the potential hazards of pesticides and thus contribute to reduction of the adverse effects on human health and the environment. On the other hand, the implementation of alternative cropping systems that are less dependent on pesticides, the development of new pesticides with novel modes of action and improved safety profiles, and the improvement of the already used pesticide formulations towards safer formulations (e.g., microcapsule suspensions) could reduce the adverse effects of farming and particularly the toxic effects of pesticides. In addition, the use of appropriate and well-maintained spraying equipment along with taking all precautions that are required in all stages of pesticide handling could minimize human exposure to pesticides and their potential adverse effects on the environment.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated pest management: historical perspectives and contemporary developments.

          M Kogan (1998)
          Twenty five years after its first enunciation, IPM is recognized as one of the most robust constructs to arise in the agricultural sciences during the second half of the twentieth century. The history of IPM, however, can be traced back to the late 1800s when ecology was identified as the foundation for scientific plant protection. That history, since the advent of modern organosynthetic pesticides, acquired elements of drama, intrigue, jealousy, and controversy that mark the path of many great scientific or technological achievements. Evolution of IPM followed multiple paths in several countries and reached beyond the confines of entomological sciences. Time and space constraints, however, bias this review toward entomology, among the plant protection sciences, and give it an obvious US slant, despite the global impact of IPM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pesticide use in developing countries.

            Chemical pesticides have been a boon to equatorial, developing nations in their efforts to eradicate insect-borne, endemic diseases, to produce adequate food and to protect forests, plantations and fibre (wood, cotton, clothing, etc.). Controversy exists over the global dependence on such agents, given their excessive use/misuse, their volatility, long-distance transport and eventual environmental contamination in colder climates. Many developing countries are in transitional phases with migration of the agricultural workforce to urban centres in search of better-paying jobs, leaving fewer people responsible for raising traditional foods for themselves and for the new, industrialized workforce. Capable of growing two or three crops per year, these same countries are becoming "breadbaskets" for the world, exporting nontraditional agricultural produce to regions having colder climates and shorter growing seasons, thereby earning much needed international trade credits. To attain these goals, there has been increased reliance on chemical pesticides. Many older, nonpatented, more toxic, environmentally persistent and inexpensive chemicals are used extensively in developing nations, creating serious acute health problems and local and global environmental contamination. There is growing public concern in these countries that no one is aware of the extent of pesticide residue contamination on local, fresh produce purchased daily or of potential, long-term, adverse health effects on consumers. Few developing nations have a clearly expressed "philosophy" concerning pesticides. There is a lack of rigorous legislation and regulations to control pesticides as well as training programs for personnel to inspect and monitor use and to initiate training programs for pesticide consumers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotoxicity of pesticides: a review of human biomonitoring studies.

              Pesticides constitute a heterogeneous category of chemicals specifically designed for the control of pests, weeds or plant diseases. Pesticides have been considered potential chemical mutagens: experimental data revealed that various agrochemical ingredients possess mutagenic properties inducing mutations, chromosomal alterations or DNA damage. Biological monitoring provides a useful tool to estimate the genetic risk deriving from an integrated exposure to a complex mixture of chemicals. Studies available in scientific literature have essentially focused on cytogenetic end-points to evaluate the potential genotoxicity of pesticides in occupationally exposed populations, including pesticide manufacturing workers, pesticide applicators, floriculturists and farm workers. A positive association between occupational exposure to complex pesticide mixtures and the presence of chromosomal aberrations (CA), sister-chromatid exchanges (SCE) and micronuclei (MN) has been detected in the majority of the studies, although a number of these failed to detect cytogenetic damage. Conflicting results from cytogenetic studies reflect the heterogeneity of the groups studied with regard to chemicals used and exposure conditions. Genetic damage associated with pesticides occurs in human populations subject to high exposure levels due to intensive use, misuse or failure of control measures. The majority of studies on cytogenetic biomarkers in pesticide-exposed workers have indicated some dose-dependent effects, with increasing duration or intensity of exposure. Chromosomal damage induced by pesticides appears to have been transient in acute or discontinuous exposure, but cumulative in continuous exposure to complex agrochemical mixtures. Data available at present on the effect of genetic polymorphism on susceptibility to pesticides does not allow any conclusion.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                101238455
                International Journal of Environmental Research and Public Health
                Molecular Diversity Preservation International (MDPI)
                1661-7827
                1660-4601
                May 2011
                6 May 2011
                : 8
                : 5
                : 1402-1419
                Affiliations
                [1 ]Department of Agricultural Development, Democritus University of Thrace, Pantazidou 193, 682 00 Orestiada, Greece
                [2 ]Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; E-Mail: eleftero@ 123456agro.auth.gr
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: damalas@ 123456mail.gr ; Tel.: +30-25520-41116; Fax: +30-25520-41191.
                Article
                ijerph-08-01402
                10.3390/ijerph8051402
                3108117
                21655127
                542f3e69-2997-49aa-ae43-a7c8049da729
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 January 2011
                : 18 April 2011
                : 28 April 2011
                Categories
                Review

                Public health
                risk assessment,pesticide toxicity,pesticide safety
                Public health
                risk assessment, pesticide toxicity, pesticide safety

                Comments

                Comment on this article