17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide‐spread plant species

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Uses and misuses of bioclimatic envelope modeling.

          Bioclimatic envelope models use associations between aspects of climate and species' occurrences to estimate the conditions that are suitable to maintain viable populations. Once bioclimatic envelopes are characterized, they can be applied to a variety of questions in ecology, evolution, and conservation. However, some have questioned the usefulness of these models, because they may be based on implausible assumptions or may be contradicted by empirical evidence. We review these areas of contention, and suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express. Although improvements in data and methods will have some effect, the usefulness of these models is contingent on their appropriate use, and they will improve mainly via better awareness of their conceptual basis, strengths, and limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias

            MAXENT is now a common species distribution modeling (SDM) tool used by conservation practitioners for predicting the distribution of a species from a set of records and environmental predictors. However, datasets of species occurrence used to train the model are often biased in the geographical space because of unequal sampling effort across the study area. This bias may be a source of strong inaccuracy in the resulting model and could lead to incorrect predictions. Although a number of sampling bias correction methods have been proposed, there is no consensual guideline to account for it. We compared here the performance of five methods of bias correction on three datasets of species occurrence: one “virtual” derived from a land cover map, and two actual datasets for a turtle (Chrysemys picta) and a salamander (Plethodon cylindraceus). We subjected these datasets to four types of sampling biases corresponding to potential types of empirical biases. We applied five correction methods to the biased samples and compared the outputs of distribution models to unbiased datasets to assess the overall correction performance of each method. The results revealed that the ability of methods to correct the initial sampling bias varied greatly depending on bias type, bias intensity and species. However, the simple systematic sampling of records consistently ranked among the best performing across the range of conditions tested, whereas other methods performed more poorly in most cases. The strong effect of initial conditions on correction performance highlights the need for further research to develop a step-by-step guideline to account for sampling bias. However, this method seems to be the most efficient in correcting sampling bias and should be advised in most cases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A map of local adaptation in Arabidopsis thaliana.

              Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
                Bookmark

                Author and article information

                Journal
                Ecography
                Ecography
                Wiley
                0906-7590
                1600-0587
                January 2020
                November 05 2019
                January 2020
                : 43
                : 1
                : 60-74
                Affiliations
                [1 ]Environmental Studies Program, 397 UCB, Univ. of Colorado Boulder USA
                [2 ]WSL‐Inst. for Snow and Avalanche Research SLF Davos Dorf Switzerland
                [3 ]Royal Botanic Gardens, Kew Richmond UK
                Article
                10.1111/ecog.04630
                53909711-c10e-4af2-a806-9044c5b47646
                © 2020

                http://creativecommons.org/licenses/by/3.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article