24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Budding Yeast Bub2 Is Localized at Spindle Pole Bodies and Activates the Mitotic Checkpoint via a Different Pathway from Mad2

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.

          Cohesion between sister chromatids opposes the splitting force exerted by microtubules, and loss of this cohesion is responsible for the subsequent separation of sister chromatids during anaphase. We describe three chromosmal proteins that prevent premature separation of sister chromatids in yeast. Two, Smc1p and Smc3p, are members of the SMC family, which are putative ATPases with coiled-coil domains. A third protein, which we call Scc1p, binds to chromosomes during S phase, dissociates from them at the metaphase-to-anaphase transition, and is degraded by the anaphase promoting complex. Association of Scc1p with chromatin depends on Smc1p. Proteins homologous to Scc1p exist in a variety of eukaryotic organisms including humans. A common cohesion apparatus might be used by all eukaryotic cells during both mitosis and meiosis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Getting started with yeast.

            F. Sherman (1991)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell cycle checkpoints: preventing an identity crisis.

              Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                31 May 1999
                : 145
                : 5
                : 979-991
                Affiliations
                Dipartimento di Genetica e Biologia dei Microrganismi, 20133 Milano, Italy
                Author notes

                Address correspondence to Simonetta Piatti, Dipartimento di Genetica e Biologia dei Microrganismi, Via Celoria 26, 20133 Milano, Italy. Tel.: 39 02 26605222/219. Fax: 49 02 2664551. E-mail: piattis@ 123456imiucca.csi.unimi.it

                Article
                10.1083/jcb.145.5.979
                2133126
                10352016
                532e9e16-2aba-4798-9f4b-2b9fd1ee4212
                Copyright @ 1999
                History
                : 12 March 1999
                : 29 April 1999
                Categories
                Regular Articles

                Cell biology
                budding yeast,bub2,mitotic checkpoint,anaphase,anaphase-promoting complex
                Cell biology
                budding yeast, bub2, mitotic checkpoint, anaphase, anaphase-promoting complex

                Comments

                Comment on this article