4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota

      , , , , , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Silage microbiology and its control through additives

            Ensiling is a method of preserving a moist crop. A moist crop can support the growth of a wide range of microorganisms, most of which will degrade the nutrient value to livestock. However, ensiling generally controls microbial activity by a combination of an anaerobic environment and a natural fermentation of sugars by lactic acid bacteria on the crop. This fermentation and the resulting low pH primarily suppress the growth of other anaerobic microorganisms. The fermentation can also inhibit yeasts, molds and aerobic bacteria, but the anaerobic environment is essential to preventing most of the spoilage microorganisms from growing. Inoculants have become the dominant additives for making silage. Homofermentative strains help guarantee a rapid suppression of anaerobic stains early in storage, increase dry matter recovery and have improved animal performance by means that we do not fully understand. Inoculants containing Lactobacillus buchneri, a heterofermentative species capable of fermenting lactic acid to acetic, are recent additives. The added acetic acid inhibits yeast and mold growth, increasing aerobic stability of silages at feeding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage.

              The objective was to study effects of lactic acid bacteria (L) and molasses (M) on the microbial community and fermentation quality of soybean silage. Soybean was ensiled with no additive control (C), 0.5% molasses (0.5%M), 0.5%M+L (0.5%ML), 2%M, 2%M+L (2%ML) for 7, 14, 30 and 60days. The M-treated silages could increase the content of lactic acid and decrease butyric acid than control. Besides, higher crude protein was also observed in M-treated silages. With prolonged ensiling time, there was a reduction of the ratio of lactic acid/acetic acid in the 2%M-treated and 2%ML-treated silages. The combined addition of L and 2%M could enhance the account of desirable Lactobacillus and inhibit the growth of undesirable microorganism such as Clostridia and Enterobacter. In summary, the silage quality of soybean was improved with the addition of L and M.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                October 2020
                October 2020
                : 314
                : 123606
                Article
                10.1016/j.biortech.2020.123606
                32629380
                52b1c496-8ddd-411c-a10c-8245f0a97dda
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article