4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time of Day for Harvest Affects the Fermentation Parameters, Bacterial Community, and Metabolic Characteristics of Sorghum-Sudangrass Hybrid Silage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          To characterize the effects of time of day for harvest on the fermentation parameters, bacterial community, and metabolic characteristics of sorghum-sudangrass hybrid (SSG) silage, SSG (vegetative stage) harvested at 7:00 (AM), 12:00 (M), and 17:00 (PM) on three sunny days were ensiled for 1, 3, 7, 14, 30, and 60 days. Compared to AM silage, M and PM silages were characterized by delayed fermentation, unnormal lower final pH, and lower acetic acid production. In addition, PM silage contained higher residual water-soluble carbohydrates than other silages. After 60 days of ensiling, AM silage was dominated by Lactobacillus, whereas the bacterial communities of M and PM silages were complex and mainly composed of bacteria such as Delftia, Methylobacterium-Methylorubrum, Enhydrobacter, Acinetobacter, and Bacillus. The harvest time affected a wide range of metabolic pathways including “Metabolism” and “Cellular Processes” and “Organismal Systems” in SSG silage. Particularly, at the late stage of ensiling M silage exhibited highest relative abundances of amino acid metabolisms including “glycine, serine, and threonine metabolism,” “phenylalanine metabolism,” and lowest relative abundances of “lysine biosynthesis.” These results suggest that the time of day for harvest could affect the fermentation parameters, bacterial community, and metabolic characteristics of SSG silage. Better SSG silage characteristics could be achieved through morning harvest.

          IMPORTANCE Ensiling is a common way for preserving green forages worldwide. Silage fermentation quality can vary greatly depending on the chemical and microbial characteristics of forage crop being ensiled. It is well documented that forages exhibit considerable variations in chemical composition and epiphytic microbiota during daylight. However, the effects of the time of day for harvest on silage fermentation is less investigated. Our results demonstrate that the time of day for harvest could affect the fermentation parameters, bacterial community, and metabolic characteristics of SSG hybrid silage. Harvesting SSG late in the day delayed fermentation process, lowered acetic acid production and final pH, and increased the residual water-soluble carbohydrates content in silage. Moreover, the delayed harvest time increased the relative abundances of bacteria such as Delftia, Methylobacterium-Methylorubrum, Acinetobacter, Enhydrobacter, and Bacillus, and amino acid metabolisms at the late stage of SSG ensiling. This study highlights the importance of diurnal changes in forage to fermentation characteristics, providing a strategy to improve silage quality through optimizing the harvest time.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture.

            Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial life in the phyllosphere.

              Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                18 July 2022
                Jul-Aug 2022
                18 July 2022
                : 7
                : 4
                : e00168-22
                Affiliations
                [a ] Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural Universitygrid.27871.3b, , Nanjing, China
                University of Iowa
                Author notes

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0001-6532-4784
                https://orcid.org/0000-0001-6739-7805
                https://orcid.org/0000-0002-1990-550X
                Article
                00168-22 msphere.00168-22
                10.1128/msphere.00168-22
                9429962
                35862805
                fdff1df9-a010-41db-a43a-3e6999748337
                Copyright © 2022 Dong et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 27 March 2022
                : 24 June 2022
                Page count
                supplementary-material: 0, Figures: 5, Tables: 4, Equations: 0, References: 65, Pages: 18, Words: 10475
                Funding
                Funded by: National Natural Science Foundation of China (NSFC), FundRef https://doi.org/10.13039/501100001809;
                Award ID: 32001398
                Award Recipient :
                Funded by: China Postdoctoral Science Foundation, FundRef https://doi.org/10.13039/501100002858;
                Award ID: 2020M671523
                Award Recipient :
                Categories
                Research Article
                biotechnology, Biotechnology
                Custom metadata
                July/August 2022

                bacterial community,fermentation parameters,metabolic characteristics,sorghum-sudangrass hybrid,time of day for harvest

                Comments

                Comment on this article