18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review of zinc nutrition and plant breeding

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants require the proper balance of zinc (Zn) for normal growth and optimum yield. Interest in Zn has risen in the last decade because Zn deficiency stress is extensive in many areas, causing decreases in crop yields. Zn deficiency also decreases the amount of Zn in cereal grain and diminishes its nutritional quality. Hence, increasing the Zn content of the edible portions of crops should be considered in plant breeding. Available data indicate that Zn enrichment traits are present within the genomes of crops that could allow for substantial increases in the Zn concentration of edible parts without negatively impacting yield. Increasing the amount of Zn in food crops can improve the Zn status of people. Furthermore, the use of Zn-dense seeds results in greater seedling vigor and increased crop yields when the seeds are sown in Zn-poor soils. Progress toward developing mineral-dense seed has mainly relied upon conventional plant breeding approaches, a process that is labor-intensive and time-consuming. Hence, the identification of DNA markers that are diagnostic of Zn efficiency can accelerate the development of cultivars that can remain productive even in Zn-deficient soils. Additionally, these markers may be used to begin identifying the specific genes responsible for differences in the response of genotypes to Zn deficiency.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.

          Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breeding for micronutrients in staple food crops from a human nutrition perspective.

            Over three billion people are currently micronutrient (i.e. micronutrient elements and vitamins) malnourished, resulting in egregious societal costs including learning disabilities among children, increased morbidity and mortality rates, lower worker productivity, and high healthcare costs, all factors diminishing human potential, felicity, and national economic development. Nutritional deficiencies (e.g. iron, zinc, vitamin A) account for almost two-thirds of the childhood death worldwide. Most of those afflicted are dependent on staple crops for their sustenance. Importantly, these crops can be enriched (i.e. 'biofortified') with micronutrients using plant breeding and/or transgenic strategies, because micronutrient enrichment traits exist within their genomes that can to used for substantially increasing micronutrient levels in these foods without negatively impacting crop productivity. Furthermore, 'proof of concept' studies have been published using transgenic approaches to biofortify staple crops (e.g. high beta-carotene 'golden rice' grain, high ferritin-Fe rice grain, etc). In addition, micronutrient element enrichment of seeds can increase crop yields when sowed to micronutrient-poor soils, assuring their adoption by farmers. Bioavailability issues must be addressed when employing plant breeding and/or transgenic approaches to reduce micronutrient malnutrition. Enhancing substances (e.g. ascorbic acid, S-containing amino acids, etc) that promote micronutrient bioavailability or decreasing antinutrient substances (e.g. phytate, polyphenolics, etc) that inhibit micronutrient bioavailability, are both options that could be pursued, but the latter approach should be used with caution. The world's agricultural community should adopt plant breeding and other genetic technologies to improve human health, and the world's nutrition and health communities should support these efforts. Sustainable solutions to this enormous global problem of 'hidden hunger' will not come without employing agricultural approaches.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The ZIP family of metal transporters

                Bookmark

                Author and article information

                Journal
                jsspn
                Journal of soil science and plant nutrition
                J. Soil Sci. Plant Nutr.
                Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo (Temuco, , Chile )
                0718-9516
                December 2013
                : 13
                : 4
                : 905-927
                Affiliations
                [01] Crawley WA orgnameUniversity of Western Australia orgdiv1Faculty of Natural and Agricultural Sciences orgdiv2Soil Science and Plant Nutrition Australia
                [02] Maragheh orgnameDryland Agricultural Research Institute (DARI) Iran
                Article
                S0718-95162013000400012 S0718-9516(13)01300400012
                10.4067/S0718-95162013005000072
                522a6206-3f6b-426c-a80f-fe39b1a18f2e

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 102, Pages: 23
                Product

                SciELO Chile


                molecular markers,breeding,genotypic variation,Zinc deficiency

                Comments

                Comment on this article