115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Summer heatwaves promote blooms of harmful cyanobacteria

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton.

              V H Smith (1983)
              An analysis of growing season data from 17 lakes throughout the world suggests that the relative proportion of blue-green algae (Cyanophyta) in the epilimnetic phytoplankton is dependent on the epilimnetic ratio of total nitrogen to total phosphorus. Blue-green algae tended to be rare when this ratio exceeded 29 to 1 by weight, suggesting that modification of this ratio by control of nutrient additions may provide a means by which lake water quality can be managed.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proceedings of the National Academy of Sciences of the United States of America
                Proceedings of the National Academy of Sciences
                1091-6490
                0027-8424
                Apr 16 2013
                : 110
                : 16
                Affiliations
                [1 ] Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA. michalak@stanford.edu
                Article
                1216006110
                10.1073/pnas.1216006110
                3631662
                23576718
                52102424-9178-42d5-b12d-80f0808e8d93
                History

                Comments

                Comment on this article