150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of food constituents: an overview.

          Recently, there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented. Also, the general chemistry underlying the assays in the present paper was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS(·+)) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH(·)) radical scavenging, Fe(3+)-Fe(2+) transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu(2+)) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical scavenging, superoxide anion radical (O (2) (·-)) scavenging, hydrogen peroxide (H(2)O(2)) scavenging, hydroxyl radical (OH(·)) scavenging, singlet oxygen ((1)O(2)) quenching assay and nitric oxide radical (NO(·)) scavenging assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods which are currently used for detection of antioxidant properties food components. This review consists of two main sections. The first section is devoted to main components in the foodstuffs and beverages. The second general section is some definitions of the main antioxidant methods commonly used for determination of antioxidant activity of components in the foodstuffs and beverages. In addition, there are given some chemical and kinetic basis and technical details of the used methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anticancer polysaccharides from natural resources: a review of recent research.

            Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Fortunately, several previous studies have shown that some non-toxic biological macromolecules, including polysaccharides and polysaccharide-protein complexes, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and complexes for the development of effective therapeutics for various human cancers. This review focuses on the advancements in the anti-cancer efficacy of various natural polysaccharides and polysaccharide complexes in the past 5 years. Most polysaccharides were tested using model systems, while several involved clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advances in bacterial exopolysaccharides: from production to biotechnological applications.

              A vast number of bacterial extracellular polysaccharides (EPSs) have been reported over recent decades, and their composition, structure, biosynthesis and functional properties have been extensively studied. Despite the great diversity of molecular structures already described for bacterial EPSs, only a few have been industrially developed. The main constraints to full commercialization are their production costs, mostly related to substrate cost and downstream processing. In this article, we review EPS biosynthetic and fermentative processes, along with current downstream strategies. Limitations and constraints of bacterial EPS development are stressed and correlation of bacterial EPS properties with polymer applications is emphasized. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                22 November 2015
                : 2016
                : 5692852
                Affiliations
                State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
                Author notes
                *Shaoping Nie: nie68@ 123456sina.com

                Academic Editor: Zhenquan Jia

                Article
                10.1155/2016/5692852
                4670676
                26682009
                51ecb88e-30fb-4bd3-93d1-0e91821bf59b
                Copyright © 2016 Junqiao Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 May 2015
                : 29 July 2015
                : 6 August 2015
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content784

                Cited by161

                Most referenced authors1,792