Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reactive oxygen species as essential mediators of cell adhesion : the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Signal transduction by reactive oxygen species (ROS; “redox signaling”) has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star

          While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and transport in accretion systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversible inactivation of the tumor suppressor PTEN by H2O2.

            The tumor suppressor PTEN regulates cell migration, growth, and survival by removing the 3'-phosphate of phosphoinositides. Exposure of purified PTEN or of cells to H(2)O(2) resulted in inactivation of PTEN in a time- and H(2)O(2) concentration-dependent manner. Analysis of various cysteine mutants, including mass spectrometry of tryptic peptides, indicated that the essential Cys(124) residue in the active site of PTEN specifically forms a disulfide with Cys(71) during oxidation by H(2)O(2). The reduction of H(2)O(2)-oxidized PTEN in cells appears to be mediated predominantly by thioredoxin. Thus, thioredoxin was more efficient than glutaredoxin, glutathione, or a 14-kDa thioredoxin-like protein with regard to the reduction of oxidized PTEN in vitro. Thioredoxin co-immunoprecipitated with PTEN from cell lysates; and incubation of cells with 2,4-dinitro-1-chlorobenzene (an inhibitor of thioredoxin reductase) delayed the reduction of oxidized PTEN, whereas incubation with buthioninesulfoximine (an inhibitor of glutathione biosynthesis) did not. These results suggest that the reversible inactivation of PTEN by H(2)O(2) might be important for the accumulation of 3'-phosphorylated phosphoinositides and that the uncontrolled generation of H(2)O(2) associated with certain pathological conditions might contribute to cell proliferation by inhibiting PTEN function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor suppressor PTEN mediates sensing of chemoattractant gradients.

              Shallow gradients of chemoattractants, sensed by G protein-linked signaling pathways, elicit localized binding of PH domains specific for PI(3,4,5)P3 at sites on the membrane where rearrangements of the cytoskeleton and pseudopod extension occur. Disruption of the PI 3-phosphatase, PTEN, in Dictyostelium discoideum dramatically prolonged and broadened the PH domain relocation and actin polymerization responses, causing the cells lacking PTEN to follow a circuitous route toward the attractant. Exogenously expressed PTEN-GFP localized to the surface membrane at the rear of the cell. Membrane localization required a putative PI(4,5)P2 binding motif and was required for chemotaxis. These results suggest that specific phosphoinositides direct actin polymerization to the cell's leading edge and regulation of PTEN through a feedback loop plays a critical role in gradient sensing and directional migration.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                9 June 2003
                : 161
                : 5
                : 933-944
                Affiliations
                [1 ]Department of Biochemical Sciences, University of Florence, 50134 Florence, Italy
                [2 ]Institute of General Pathology, Catholic University Medical School, 00168 Rome, Italy
                [3 ]Laboratory of Molecular Oncology, Picower Institute for Medical Research, Manhasset, NY 10030
                Author notes

                Address correspondence to Giampietro Ramponi, Dipartimento di Scienze Biochimiche, viale Morgagni 50, 50134 Firenze, Italy. Tel.: 39-055-413765. Fax: 39-055-4222725. E-mail: ramponi@ 123456scibio.unifi.it

                Article
                200211118
                10.1083/jcb.200211118
                2172955
                12796479
                51a268e0-8e60-4f90-be90-fc9c91733316
                Copyright © 2003, The Rockefeller University Press
                History
                : 26 November 2002
                : 18 April 2003
                : 21 April 2003
                Categories
                Article

                Cell biology
                reactive oxygen species; integrin-mediated cell adhesion; rac; lmw-ptp; focal adhesion kinase

                Comments

                Comment on this article