9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research efforts for realizing safer and higher performance energetic materials are continuing unabated all over the globe. While the thermites – pyrotechnic compositions of an oxide and a metal – have been finely tailored thanks to progress in other sectors, organic high explosives are still stagnating. The most symptomatic example is the longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Recent advances in crystallization processes and milling technology mark the beginning of a new area which will hopefully lead the pyroelectric industry to finally embrace nanotechnology. This work reviews the previous and current techniques used to crystallize RDX at a submicrometer scale or smaller. Several key points are highlighted then discussed, such as the smallest particle size and its morphology, and the scale-up capacity and the versatility of the process.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Encapsulation in the food industry: a review.

          Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ceramic Powder Synthesis by Spray Pyrolysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Preparation of nanoparticles via spray route

                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                2190-4286
                2017
                17 February 2017
                : 8
                : 452-466
                Affiliations
                [1 ]NS3E, UMR 3208 ISL-CNRS-Unistra, Institut franco-allemand de recherches de Saint-Louis (ISL), 5 rue du Général Cassagnou, F-68301 St. Louis, France
                Article
                10.3762/bjnano.8.49
                5331269
                51a1c097-2ec4-4202-8cfa-1006c627221c
                Copyright © 2017, Pessina and Spitzer; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: ( http://www.beilstein-journals.org/bjnano)

                History
                : 14 September 2016
                : 1 February 2017
                Categories
                Review
                Nanoscience
                Nanotechnology

                crystallization,nanoparticles,rdx,review,submicrometer,1,3,5-trinitroperhydro-1,3,5-triazine

                Comments

                Comment on this article