Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reversible MCMC on Markov equivalence classes of sparse directed acyclic graphs

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphical models are popular statistical tools which are used to represent dependent or causal complex systems. Statistically equivalent causal or directed graphical models are said to belong to a Markov equivalent class. It is of great interest to describe and understand the space of such classes. However, with currently known algorithms, sampling over such classes is only feasible for graphs with fewer than approximately 20 vertices. In this paper, we design reversible irreducible Markov chains on the space of Markov equivalent classes by proposing a perfect set of operators that determine the transitions of the Markov chain. The stationary distribution of a proposed Markov chain has a closed form and can be computed easily. Specifically, we construct a concrete perfect set of operators on sparse Markov equivalence classes by introducing appropriate conditions on each possible operator. Algorithms and their accelerated versions are provided to efficiently generate Markov chains and to explore properties of Markov equivalence classes of sparse directed acyclic graphs (DAGs) with thousands of vertices. We find experimentally that in most Markov equivalence classes of sparse DAGs, (1) most edges are directed, (2) most undirected subgraphs are small and (3) the number of these undirected subgraphs grows approximately linearly with the number of vertices. The article contains supplement arXiv:1303.0632, http://dx.doi.org/10.1214/13-AOS1125SUPP

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          A Bayesian networks approach for predicting protein-protein interactions from genomic data.

          R. Jansen (2003)
          We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Learning Bayesian networks: The combination of knowledge and statistical data

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferring cellular networks using probabilistic graphical models.

              High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.
                Bookmark

                Author and article information

                Journal
                26 September 2012
                2014-01-27
                Article
                10.1214/13-AOS1125
                1209.5860
                515b0d98-6492-4ed5-8f06-d5f2044f4d23

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                IMS-AOS-AOS1125
                Annals of Statistics 2013, Vol. 41, No. 4, 1742-1779
                Published in at http://dx.doi.org/10.1214/13-AOS1125 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)
                stat.ML cs.DM stat.ME
                vtex

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content92

                Cited by6

                Most referenced authors80