1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overview of Adductomics in Toxicology

      1
      Current Protocols
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adductomics is epidemiology at the molecular level. Untargeted adductomics compares levels of chemical adducts on albumin, hemoglobin, and DNA between healthy and exposed individuals. The goal is to determine a cause‐and‐effect relationship between chemical exposure and illness. Chemical exposures are not necessarily due to synthetic chemicals but are often due to oxidation products of naturally occurring lipids, for example, 4‐hydroxynonenal and acrolein produced by lipid peroxidation of arachidonic and linoleic acids. The preferred method used in adductomics is ultra‐high pressure liquid chromatography coupled to with nanoelectrospray tandem mass spectrometry. The mass of the adduct indicates its structure and identifies the chemical. The advantages of molecular epidemiology include information about the many toxicants to which a person is exposed over a period of weeks or months and the relative exposure levels. The disadvantage is the absence of information about the mechanism of toxicity. Untargeted adductomics examines albumin and hemoglobin adducts, which serve as biomarkers of exposure but do not identify the proteins and genes responsible for the toxicity. Targeted adductomics is used when the origin of the toxicity is known. This can be either an adducted protein, such as the butyrylcholinesterase protein modified by nerve agents, or a toxicant, such as acetaminophen. Untargeted adductomics methods have identified potential protein adduct biomarkers of breast cancer, colorectal cancer, childhood leukemia, and lung cancer. Adductomics is a new research area that offers structural insights into chemical exposures and a platform for the discovery of disease biomarkers. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair.

          The tumor suppressor gene p53 is frequently mutated in cigarette smoke (CS)-related lung cancer. The p53 binding pattern of carcinogenic polycyclic aromatic hydrocarbons (PAHs) found in CS coincides with the p53 mutational pattern found in lung cancer, and PAHs have thus been considered to be major culprits for lung cancer. However, compared with other carcinogenic compounds, such as aldehydes, the amount of PAHs in CS is minute. Acrolein (Acr) is abundant in CS, and it can directly adduct DNA. Acr-DNA adducts, similar to PAH-DNA adducts, induce predominantly G-to-T transversions in human cells. These findings raise the question of whether Acr-DNA adducts are responsible for p53 mutations in CS-related lung cancer. To determine the role of Acr-DNA adducts in p53 mutagenesis in CS-related lung cancer we mapped the distribution of Acr-DNA adducts at the sequence level in the p53 gene of lung cells using the UvrABC incision method in combination with ligation-mediated PCR. We found that the Acr-DNA binding pattern is similar to the p53 mutational pattern in human lung cancer. Acr preferentially binds at CpG sites, and this enhancement of binding is due to cytosine methylation at these sequences. Furthermore, we found that Acr can greatly reduce the DNA repair capacity for damage induced by benzo[a]pyrene diol epoxide. Together these results suggest that Acr is a major etiological agent for CS-related lung cancer and that it contributes to lung carcinogenesis through two detrimental effects: DNA damage and inhibition of DNA repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology.

            Since their discovery 50 years ago, the aflatoxins have become recognized as ubiquitous contaminants of the human food supply throughout the economically developing world. The adverse toxicological consequences of these compounds in populations are quite varied because of a wide range of exposures leading to acute effects, including rapid death, and chronic outcomes such as hepatocellular carcinoma. Furthermore, emerging studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Aflatoxin exposures have also been demonstrated to multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV) illustrating the deleterious impact that even low toxin levels in the diet can pose for human health. The public health impact of aflatoxin exposure is pervasive. Aflatoxin biomarkers of internal and biologically effective doses have been integral to the establishment of the etiologic role of this toxin in human disease through better estimates of exposure, expanded knowledge of the mechanisms of disease pathogenesis, and as tools for implementing and evaluating preventive interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Carcinogens and DNA damage

              Humans are variously and continuously exposed to a wide range of different DNA-damaging agents, some of which are classed as carcinogens. DNA damage can arise from exposure to exogenous agents, but damage from endogenous processes is probably far more prevalent. That said, epidemiological studies of migrant populations from regions of low cancer risk to high cancer risk countries point to a role for environmental and/or lifestyle factors playing a pivotal part in cancer aetiology. One might reasonably surmise from this that carcinogens found in our environment or diet are culpable. Exposure to carcinogens is associated with various forms of DNA damage such as single-stand breaks, double-strand breaks, covalently bound chemical DNA adducts, oxidative-induced lesions and DNA–DNA or DNA–protein cross-links. This review predominantly concentrates on DNA damage induced by the following carcinogens: polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, mycotoxins, ultraviolet light, ionising radiation, aristolochic acid, nitrosamines and particulate matter. Additionally, we allude to some of the cancer types where there is molecular epidemiological evidence that these agents are aetiological risk factors. The complex role that carcinogens play in the pathophysiology of cancer development remains obscure, but DNA damage remains pivotal to this process.
                Bookmark

                Author and article information

                Journal
                Current Protocols
                Current Protocols
                Wiley
                2691-1299
                2691-1299
                February 2023
                February 17 2023
                February 2023
                : 3
                : 2
                Affiliations
                [1 ] University of Nebraska Medical Center Omaha Nebraska
                Article
                10.1002/cpz1.672
                513f8f57-4264-404c-8a11-791e0dc952b8
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article