16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Viscosity of liquid water in the range −8 °C to 150 °C

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells.

            This paper describes the in vitro cytotoxicity assessment of single walled carbon nanotubes (SWCNT) on A549 cells, a human lung cell line. Cellular viability was determined using the alamar blue (AB), neutral red (NR) and MTT assays, which evaluated metabolic, lysosomal and mitochondrial activity respectively. In addition, the total protein content of the cells was measured using the coomassie brilliant (CB) blue assay. Supernatants were also assayed for Adenylate Kinase (AK) release and Interleukin 8 (IL-8) which indicated a loss of cell membrane integrity and an inflammation response respectively. To investigate the interactions between serum components in the test medium and the test materials, exposures were conducted both in serum containing (5%) and serum-free medium. Results from the cytotoxicity tests (AB, CB, MTT) revealed the SWCNT to have very low acute toxicity to the A549 cells as all but one of the reported 24h EC(50) values exceeded the top concentration tested (800 microg/ml). The SWCNT were found to interfere with a number of the dyes used in the cytotoxicity assessment and we are currently conducting a comprehensive spectroscopic study to further investigate these interactions. Of the multiple cytotoxicity assays used, the AB assay was found to be the most sensitive and reproducible. Transmission electron microscopy (TEM) studies confirmed that there was no intracellular localization of SWCNT in A549 cells following 24h exposure; however, increased numbers of surfactant storing lamellar bodies were observed in exposed cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ultrafine particles and platelet activation in patients with coronary heart disease – results from a prospective panel study

              Background Epidemiological studies on health effects of air pollution have consistently shown adverse cardiovascular effects. Toxicological studies have provided evidence for thrombogenic effects of particles. A prospective panel study in a susceptible population was conducted in Erfurt, Germany, to study the effects of daily changes in ambient particles on various blood cells and soluble CD40ligand (sCD40L, also known as CD154), a marker for platelet activation that can cause increased coagulation and inflammation. Blood cells and plasma sCD40L levels were repeatedly measured in 57 male patients with coronary heart disease (CHD) during winter 2000/2001. Fixed effects linear regression models were applied, adjusting for trend, weekday and meteorological parameters. Hourly data on ultrafine particles (UFP, number concentration of particles from 0.01 to 0.1 μm), mass concentration of particles less than 10 and 2.5 μm in diameter (PM10, PM2.5), accumulation mode particle counts (AP, 0.1–1.0 μm), elemental and organic carbon, gaseous pollutants and meteorological data were collected at central monitoring sites. Results An immediate increase in plasma sCD40L was found in association with UFP and AP (% change from geometric mean: 7.1; CI: [0.1, 14.5] and 6.9; CI: [0.5, 13.8], respectively). Platelet counts decreased in association with UFP showing an immediate, a three days delayed (lag 3) and a 5-day average response (% change from the mean: -1.8; CI: [-3.4,-0.2]; -2.4; CI: [-4.5,-0.3] and -2.2; CI: [-4.0,-0.3] respectively). Conclusion The increased plasma sCD40L levels support the hypothesis that higher levels of ambient air pollution lead to an inflammatory response in patients with CHD thus providing a possible explanation for the observed association between air pollution and cardiovascular morbidity and mortality in susceptible parts of the population.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                05 January 2012
                March 2012
                : 2
                : 1
                : 15-30
                Affiliations
                [1 ]Polymer Standards Section Japan (PSSJ), Particle Measurement Section (PMS), National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Email: H-kato@ 123456aist.go.jp (H.K); Email: nakamura@ 123456tasc-nt.or.jp (A.N); Email: kayori.takahashi@ 123456ni.aist.go.jp (K.T); Email: s.kinugasa@ 123456aist.go.jp (S.K)
                Author notes
                [* ]Author to whom correspondence should be addressed; Email: H-kato@ 123456aist.go.jp ; Tel.: +81-29-861-489; Fax: +81-29-861-4618.
                Article
                nanomaterials-02-00015
                10.3390/nano2010015
                5327882
                28348293
                50f727e9-638f-4213-95cb-78a81ed09616
                © 2012 by the authors.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 November 2011
                : 17 December 2011
                : 26 December 2011
                Categories
                Article

                asymmetric flow field flow fractionation,multi-angle light scattering,dynamic light scattering,nanoparticle,polystyrene latex

                Comments

                Comment on this article