17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of viral evolution in rabies host shifts and emergence

      review-article
      1 , 1 , 1 , 2
      Current Opinion in Virology
      Elsevier

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Rabies virus has a broad host range, but transmission cycles are species-specific.

          • Significant barriers limit viral establishment in new host species, but are poorly characterised.

          • Viral preadaptation may facilitate emergence, but does not rule out host adaptation.

          • Several lines of evidence point to adaptation of Rabies virus to specific hosts.

          Abstract

          Despite its ability to infect all mammals, Rabies virus persists in numerous species-specific cycles that rarely sustain transmission in alternative species. The determinants of these species-associations and the adaptive significance of genetic divergence between host-associated viruses are poorly understood. One explanation is that epidemiological separation between reservoirs causes neutral genetic differentiation. Indeed, recent studies attributed host shifts to ecological factors and selection of ‘preadapted’ viral variants from the existing viral community. However, phenotypic differences between isolates and broad scale comparative and molecular evolutionary analyses indicate multiple barriers that Rabies virus must overcome through adaptation. This review assesses various lines of evidence and proposes a synthetic hypothesis for the respective roles of ecology and evolution in Rabies virus host shifts.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Re-evaluating the burden of rabies in Africa and Asia.

          To quantify the public health and economic burden of endemic canine rabies in Africa and Asia. Data from these regions were applied to a set of linked epidemiological and economic models. The human population at risk from endemic canine rabies was predicted using data on dog density, and human rabies deaths were estimated using a series of probability steps to determine the likelihood of clinical rabies developing in a person after being bitten by a dog suspected of having rabies. Model outputs on mortality and morbidity associated with rabies were used to calculate an improved disability-adjusted life year (DALY) score for the disease. The total societal cost incurred by the disease is presented. Human mortality from endemic canine rabies was estimated to be 55 000 deaths per year (90% confidence interval (CI) = 24 000-93 000). Deaths due to rabies are responsible for 1.74 million DALYs lost each year (90% CI = 0.75-2.93). An additional 0.04 million DALYs are lost through morbidity and mortality following side-effects of nerve-tissue vaccines. The estimated annual cost of rabies is USD 583.5 million (90% CI = USD 540.1-626.3 million). Patient-borne costs for post-exposure treatment form the bulk of expenditure, accounting for nearly half the total costs of rabies. Rabies remains an important yet neglected disease in Africa and Asia. Disparities in the affordability and accessibility of post-exposure treatment and risks of exposure to rabid dogs result in a skewed distribution of the disease burden across society, with the major impact falling on those living in poor rural communities, in particular children.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats.

            For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem.

              Knowledge of infection reservoir dynamics is critical for effective disease control, but identifying reservoirs of multi-host pathogens is challenging. Here, we synthesize several lines of evidence to investigate rabies reservoirs in complex carnivore communities of the Serengeti ecological region in northwest Tanzania, where the disease has been confirmed in 12 carnivore species.Long-term monitoring data suggest that rabies persists in high-density domestic dog Canis familiaris populations (> 11 dogs km(-2)) and occurs less frequently in lower-density (< 5 dogs km(-2)) populations and only sporadically in wild carnivores.Genetic data show that a single rabies virus variant belonging to the group of southern Africa canid-associated viruses (Africa 1b) circulates among a range of species, with no evidence of species-specific virus-host associations.Within-species transmission was more frequently inferred from high-resolution epidemiological data than between-species transmission. Incidence patterns indicate that spill-over of rabies from domestic dog populations sometimes initiates short-lived chains of transmission in other carnivores.Synthesis and applications. The balance of evidence suggests that the reservoir of rabies in the Serengeti ecosystem is a complex multi-host community where domestic dogs are the only population essential for persistence, although other carnivores contribute to the reservoir as non-maintenance populations. Control programmes that target domestic dog populations should therefore have the greatest impact on reducing the risk of infection in all other species including humans, livestock and endangered wildlife populations, but transmission in other species may increase the level of vaccination coverage in domestic dog populations necessary to eliminate rabies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Opin Virol
                Curr Opin Virol
                Current Opinion in Virology
                Elsevier
                1879-6257
                1879-6265
                1 October 2014
                October 2014
                : 8
                : 68-72
                Affiliations
                [1 ]Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
                [2 ]Medical Research Council, University of Glasgow, Centre for Virus Research, Glasgow G61 1QH, UK
                Article
                S1879-6257(14)00148-5
                10.1016/j.coviro.2014.07.004
                4199325
                25064563
                50d861ac-2c13-48b9-9bdb-37758819c803
                © 2014 The Authors
                History
                Categories
                Article

                Comments

                Comment on this article