25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperative Regulation of Non-Small Cell Lung Carcinoma by Nicotinic and Beta-Adrenergic Receptors: A Novel Target for Intervention

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the leading cause of cancer death; 80–85% of lung cancer cases are non-small cell lung cancer (NSCLC). Smoking is a documented risk factor for the development of this cancer. Although nicotine does not have the ability to initiate carcinogenic events, recent studies have implicated nicotine in growth stimulation of NSCLC. Using three NSCLC cell lines (NCI-H322, NCI-H441 and NCI-H1299), we identified the cooperation of nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs) as principal regulators of these effects. Proliferation was measured by thymidine incorporation and MTT assays, and Western blots were used to monitor the upregulation of the nAChRs and activation of signaling molecules. Noradrenaline and GABA were measured by immunoassays. Nicotine-treated NSCLC cells showed significant induction of the α7nAChR and α4nAChR, along with significant inductions of p-CREB and p-ERK1/2 accompanied by increases in the stress neurotransmitter noradrenaline, which in turn led to the observed increase in DNA synthesis and cell proliferation. Effects on cell proliferation and signaling proteins were reversed by the α7nAChR antagonist α-BTX or the β-blocker propranolol. Nicotine treatment also down-regulated expression of the GABA synthesizing enzyme GAD 65 and the level of endogenous GABA, while treatment of NSCLC cells with GABA inhibited cell proliferation. Interestingly, GABA acts by reducing β-adrenergic activated cAMP signaling. Our findings suggest that nicotine-induced activation of this autocrine noradrenaline-initiated signaling cascade and concomitant deficiency in inhibitory GABA, similar to modulation of these neurotransmitters in the nicotine-addicted brain, may contribute to the development of NSCLC in smokers. Our data suggest that exposure to nicotine either by tobacco smoke or nicotine supplements facilitates growth and progression of NSCLC and that pharmacological intervention by β blocker may lower the risk for NSCLC development among smokers and could be used to enhance the clinical outcome of standard cancer therapy.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2007.

          Each year, the American Cancer Society (ACS) estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. This report considers incidence data through 2003 and mortality data through 2004. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,444,920 new cancer cases and 559,650 deaths for cancers are projected to occur in the United States in 2007. Notable trends in cancer incidence and mortality rates include stabilization of the age-standardized, delay-adjusted incidence rates for all cancers combined in men from 1995 through 2003; a continuing increase in the incidence rate by 0.3% per year in women; and a 13.6% total decrease in age-standardized cancer death rates among men and women combined between 1991 and 2004. This report also examines cancer incidence, mortality, and survival by site, sex, race/ethnicity, geographic area, and calendar year, as well as the proportionate contribution of selected sites to the overall trends. While the absolute number of cancer deaths decreased for the second consecutive year in the United States (by more than 3,000 from 2003 to 2004) and much progress has been made in reducing mortality rates and improving survival, cancer still accounts for more deaths than heart disease in persons under age 85 years. Further progress can be accelerated by supporting new discoveries and by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans.

            Animal life is controlled by neurons and in this setting cholinergic neurons play an important role. Cholinergic neurons release ACh, which via nicotinic and muscarinic receptors (n- and mAChRs) mediate chemical neurotransmission, a highly integrative process. Thus, the organism responds to external and internal stimuli to maintain and optimize survival and mood. Blockade of cholinergic neurotransmission is followed by immediate death. However, cholinergic communication has been established from the beginning of life in primitive organisms such as bacteria, algae, protozoa, sponge and primitive plants and fungi, irrespective of neurons. Tubocurarine- and atropine-sensitive effects are observed in plants indicating functional significance. All components of the cholinergic system (ChAT, ACh, n- and mAChRs, high-affinity choline uptake, esterase) have been demonstrated in mammalian non-neuronal cells, including those of humans. Embryonic stem cells (mice), epithelial, endothelial and immune cells synthesize ACh, which via differently expressed patterns of n- and mAChRs modulates cell activities to respond to internal or external stimuli. This helps to maintain and optimize cell function, such as proliferation, differentiation, formation of a physical barrier, migration, and ion and water movements. Blockade of n- and mACHRs on non-innervated cells causes cellular dysfunction and/or cell death. Thus, cholinergic signalling in non-neuronal cells is comparable to cholinergic neurotransmission. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of diseases. Alterations have been detected in inflammatory processes and a pathobiologic role of non-neuronal ACh in different diseases is discussed. The present article reviews recent findings about the non-neuronal cholinergic system in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress hormone-mediated invasion of ovarian cancer cells.

              There is growing evidence that stress and other behavioral factors may affect cancer progression and patient survival. The underlying mechanisms for this association are poorly understood. The purpose of this study is to determine the effects of stress-associated hormones norepinephrine, epinephrine, and cortisol on the invasive potential of ovarian cancer cells. The ovarian cancer cells EG, SKOV3, and 222 were exposed to increasing levels of either norepinephrine, epinephrine, or cortisol, and the in vitro invasive potential was determined using the membrane invasion culture system. Additionally, the effects of these stress hormones on matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined by ELISA. The effects of the beta-adrenergic agonist isoproterenol on in vivo tumor growth were determined using nude mice. Stress levels of norepinephrine increased the in vitro invasiveness of ovarian cancer cells by 89% to 198%. Epinephrine also induced significant increases in invasion in all three cell lines ranging from 64% to 76%. Cortisol did not significantly affect invasiveness of the EG and 222 cell lines but increased invasion in the SKOV3 cell line (P = 0.01). We have previously shown that ovarian cancer cells express beta-adrenergic receptors. The beta-adrenergic antagonist propanolol (1 mumol/L) completely blocked the norepinephrine-induced increase in invasiveness. Norepinephrine also increased tumor cell expression of MMP-2 (P = 0.02 for both SKOV3 and EG cells) and MMP-9 (P = 0.01 and 0.04, respectively), and pharmacologic blockade of MMPs abrogated the effects of norepinephrine on tumor cell invasive potential. Isoproterenol treatment resulted in a significant increase in tumor volume and infiltration in the SKOV3ip1 in vivo model, which was blocked by propranolol. These findings provide direct experimental evidence that stress hormones can enhance the invasive potential of ovarian cancer cells. These effects are most likely mediated by stimulation of MMPs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 January 2012
                : 7
                : 1
                : e29915
                Affiliations
                [1 ]Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
                [2 ]Department of Preventive Medicine, Sana'a University, Sana'a, Yemen
                Institut National de la Santé et de la Recherche Médicale - Institut Cochin, France
                Author notes

                Conceived and designed the experiments: HMS. Performed the experiments: HANA MHA. Analyzed the data: HMS HANA MHA. Wrote the paper: HANA HMS. Obtained funding: HMS.

                Article
                PONE-D-11-15246
                10.1371/journal.pone.0029915
                3257239
                22253823
                5073cb94-0cc9-4d9d-8268-0a6dc03938f4
                Al-Wadei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 August 2011
                : 6 December 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Genetics
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Signaling Pathways
                Neuroscience
                Neurochemistry
                Neurochemicals
                Medicine
                Oncology
                Cancers and Neoplasms
                Lung and Intrathoracic Tumors

                Uncategorized
                Uncategorized

                Comments

                Comment on this article