12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The vitals of NETs

      1 , 1 , 1 , 2
      Journal of Leukocyte Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps kill bacteria.

          Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil extracellular traps in immunity and disease

            Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

              It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
                Bookmark

                Author and article information

                Journal
                Journal of Leukocyte Biology
                J Leukoc Biol
                Wiley
                0741-5400
                1938-3673
                October 2021
                December 30 2020
                October 2021
                : 110
                : 4
                : 797-808
                Affiliations
                [1 ]Center for Immunology and Inflammation The Feinstein Institutes for Medical Research Manhasset New York USA
                [2 ]Departments of Surgery and Molecular Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead New York USA
                Article
                10.1002/JLB.3RU0620-375R
                33378572
                50692334-ef9b-4371-8012-d3261660e3f4
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article