18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.

          Related collections

          Most cited references248

          • Record: found
          • Abstract: found
          • Article: not found

          Thiol-ene click chemistry.

          Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Finer features for functional microdevices.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in bone tissue engineering scaffolds.

              Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                12 August 2020
                2020
                : 8
                : 875
                Affiliations
                [1] 1Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield , Sheffield, United Kingdom
                [2] 2Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield , Sheffield, United Kingdom
                Author notes

                Edited by: Lorenzo Moroni, Maastricht University, Netherlands

                Reviewed by: Jules Harings, Maastricht University, Netherlands; Patricia Diaz-Rodriguez, University of La Laguna, Spain

                *Correspondence: Frederik Claeyssens, f.claeyssens@ 123456sheffield.ac.uk

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.00875
                7435020
                32039188
                503e327e-6b7d-4441-abbe-8454fae10c89
                Copyright © 2020 Aldemir Dikici and Claeyssens.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 April 2020
                : 08 July 2020
                Page count
                Figures: 13, Tables: 2, Equations: 5, References: 266, Pages: 32, Words: 0
                Funding
                Funded by: University of Sheffield 10.13039/501100000858
                Categories
                Bioengineering and Biotechnology
                Review

                emulsion templating,tissue engineering,biomaterials,scaffold,polyhipe,porosity,interconnectivity,tunability

                Comments

                Comment on this article