3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation and optimization of folate-bovine serum albumin-coated ethoniosomes of pterostilbene as a targeted drug delivery system for lung cancer: In vitro and in vivo demonstrations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to overcome the poor solubility of pterostilbene (PTS) by developing promising reconstituted proethoniosomes (PENs). The reconstituted PENs loaded with PTS were fabricated according to a 2 3 factorial design by Design-Expert® software. The prepared ethoniosomes were assessed for entrapment efficiency (EE %) and % PTS released after 24 h (Q 24h). According to the desirability criteria, the ethoniosomal formula (F4) was chosen as the optimized formulation with EE% of 93.19 ± 0.66 and Q 24h of 75.10 ± 1.90%. The optimum ethoniosomal formulation was further coated with folic acid (FA) using bovine serum albumin (BSA) as a carrier and stabilizing agent and further evaluated for transmission electron microscopy (TEM), particle size, zeta potential, elasticity, Fourier transform infrared spectroscopy (FTIR), and stability. The targeted ethoniosomal formula appeared as spherical nanovesicles with a size of 144.05 ± 1.77 nm size and a zeta potential of -38.6 mV. The elasticity of the targeted ethoniosomal formula 19.27 ± 1.2 was higher than that of the corresponding niosome 1.48 ± 0.02. The targeted ethoniosomal formula showed high stability for three months. Fluorescence microscopy demonstrated an accumulation of FA-BSA-ethoniosomes in the cytoplasm of A549 cell lines. The observed therapeutic activity of the targeted ethoniosomal formula on lung cancer was explored by in vitro cytotoxicity on A549 lung cancer cells and in vivo animal models. The in vivo results were supported by histopathological analysis and immunohistochemical caspase-3 staining. FA-BSA-ethoniosomal formulation allowed specific targeting of cancer tissues overexpressing folate receptors. Overall, these results confirmed that the targeted ethoniosomal formula could be a promising nano-carrier for potential application as targeted cancer chemotherapy in clinical studies.

          Graphical Abstract

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Non-small cell lung cancer: current treatment and future advances.

          Lung cancer has a poor prognosis; over half of people diagnosed with lung cancer die within one year of diagnosis and the 5-year survival is less than 18%. Non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Risk factors for developing NSCLC have been identified, with cigarette smoking being a major factor along with other environmental and genetic risk factors. Depending on the staging of lung cancer, patients are eligible for certain treatments ranging from surgery to radiation to chemotherapy as well as targeted therapy. With the advancement of genetics and biomarkers testing, specific mutations have been identified to better target treatment for individual patients. This review discusses current treatments including surgery, chemotherapy, radiotherapy, and immunotherapy as well as how biomarker testing has helped improve survival in patients with NSCLC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New colorimetric cytotoxicity assay for anticancer-drug screening.

            We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties.

              This work describes a novel carrier for enhanced skin delivery, the ethosomal system, which is composed of phospholipid, ethanol and water. Ethosomal systems were much more efficient at delivering a fluorescent probe to the skin in terms of quantity and depth, than either liposomes or hydroalcoholic solution. The ethosomal system dramatically enhanced the skin permeation of minoxidil in vitro compared with either ethanolic or hydroethanolic solution or phospholipid ethanolic micellar solution of minoxidil. In addition, the transdermal delivery of testosterone from an ethosomal patch was greater both in vitro and in vivo than from commercially available patches. Skin permeation of ethosomal components, ethanol and phospholipid, was demonstrated in diffusion-cell experiments. Ethosomal systems composed of soy phosphatidylcholine 2%, ethanol 30% and water were shown by electron microscopy to contain multilamellar vesicles. 31P-NMR studies confirmed the bilayer configuration of the lipids. Calorimetry and fluorescence measurements suggested that the vesicular bilayers are flexible, having a relatively low T(m) and fluorescence anisotropy compared with liposomes obtained in the absence of ethanol. Dynamic light scattering measurements indicated that ethanol imparted a negative charge to the vesicles. The average vesicle size, as measured by dynamic light scattering, was modulated by altering the ethosome composition. Experiments using fluorescent probes and ultracentrifugation showed that the ethosomes had a high entrapment capacity for molecules of various lyophilicities.
                Bookmark

                Author and article information

                Journal
                Cancer Nanotechnology
                Cancer Nano
                Springer Science and Business Media LLC
                1868-6958
                1868-6966
                December 2023
                May 08 2023
                December 2023
                : 14
                : 1
                Article
                10.1186/s12645-023-00197-4
                50322ea4-8643-459c-9e50-b44a8f460abb
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article