4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the structure and regulation of the murine gene encoding gut-enriched Krüppel-like factor (Krüppel-like factor 4).

      Nucleic Acids Research
      Animals, Base Sequence, CHO Cells, COS Cells, Cricetinae, DNA Footprinting, DNA-Binding Proteins, Gene Expression Regulation, Kruppel-Like Transcription Factors, Mice, Molecular Sequence Data, Mutagenesis, Site-Directed, Promoter Regions, Genetic, Recombinant Proteins, chemistry, genetics, Transcription Factors, Transcriptional Activation, Zinc Fingers

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gut-enriched Krüppel-like factor (GKLF, KLF4) is an epithelial-specific transcription factor whose expression is associated with growth arrest. In order to understand the mechanisms regulating expression of the gene encoding GKLF, we isolated a genomic clone containing murine GKLF. The gene spans 5.3 kb and contains four exons. A major start site of transcription was mapped to an adenine residue 601 nt 5' of the translation initiation codon. An additional 1 kb of the 5'-flanking region was sequenced and found to contain multiple cis -elements homologous to the binding sites of several established transcription factors including Sp1, AP-1, Cdx, GATA, and USF. In particular, three closely spaced GC-boxes 5' of the TATA box resemble the established binding site for GKLF. DNase I protection and electrophoretic mobility shift assays verified that recombinant GKLF bound to each of the three GC-boxes. In co-transfection experiments, GKLF transactivated a reporter gene linked to the GKLF 1 kb 5'-flanking region, as did Sp1, Sp3 and Cdx-2. Mutations of one or both of the first and second GC-boxes in the promoter resulted in diminished transactivation by GKLF. These results demonstrate that the 5'-flanking sequence of the mouse GKLF gene functions as a promoter and is subject to autoregulation by its own gene product.

          Related collections

          Author and article information

          Comments

          Comment on this article