44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

          Author Summary

          Reverse genetics is a powerful tool for fundamental studies of virus biology, pathology and biotechnology applications. Although plant negative-strand RNA (NSR) viruses consist of members in the Rhabdoviridae, Bunyaviridae, Ophioviridae families and several unassigned genera that collectively account for many economically important crop diseases, unfortunately, several technical difficulties have hindered application of genetic engineering to these groups of viruses. This study describes the first reverse genetics system developed for plant NSR viruses. We report an efficient procedure for production of infectious virus from cloned cDNAs of sonchus yellow net virus (SYNV) RNAs, a model plant rhabdovirus. We have also engineered a recombinant SYNV vector for stable expression of a fluorescent reporter gene. Using this system, we have generated targeted SYNV mutants whose analyses provide key insights into enveloped plant virus movement and morphogenesis processes. Moreover, our findings provide a template for reverse genetics studies with other plant rhabdoviruses, and a strategy to circumvent technical difficulties that have hampered these applications to plant NSR viruses.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.

          Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA-based antiviral immunity.

            In eukaryotic RNA-based antiviral immunity, viral double-stranded RNA is recognized as a pathogen-associated molecular pattern and processed into small interfering RNAs (siRNAs) by the host ribonuclease Dicer. After amplification by host RNA-dependent RNA polymerases in some cases, these virus-derived siRNAs guide specific antiviral immunity through RNA interference and related RNA silencing effector mechanisms. Here, I review recent studies on the features of viral siRNAs and other virus-derived small RNAs from virus-infected fungi, plants, insects, nematodes and vertebrates and discuss the innate and adaptive properties of RNA-based antiviral immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinant vesicular stomatitis viruses from DNA.

              We assembled a DNA clone containing the 11,161-nt sequence of the prototype rhabdovirus, vesicular stomatitis virus (VSV), such that it could be transcribed by the bacteriophage T7 RNA polymerase to yield a full-length positive-strand RNA complementary to the VSV genome. Expression of this RNA in cells also expressing the VSV nucleocapsid protein and the two VSV polymerase subunits resulted in production of VSV with the growth characteristics of wild-type VSV. Recovery of virus from DNA was verified by (i) the presence of two genetic tags generating restriction sites in DNA derived from the genome, (ii) direct sequencing of the genomic RNA of the recovered virus, and (iii) production of a VSV recombinant in which the glycoprotein was derived from a second serotype. The ability to generate VSV from DNA opens numerous possibilities for the genetic analysis of VSV replication. In addition, because VSV can be grown to very high titers and in large quantities with relative ease, it may be possible to genetically engineer recombinant VSVs displaying foreign antigens. Such modified viruses could be useful as vaccines conferring protection against other viruses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                20 October 2015
                October 2015
                : 11
                : 10
                : e1005223
                Affiliations
                [1 ]State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
                [2 ]State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
                [3 ]Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
                Chinese Academy of Sciences, CHINA
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZL AOJ. Performed the experiments: ZL QW XM SQ XiZ KS XC. Analyzed the data: ZL QW XM SQ AOJ. Contributed reagents/materials/analysis tools: ZL XuZ AOJ. Wrote the paper: ZL QW XM AOJ.

                Article
                PPATHOGENS-D-15-01733
                10.1371/journal.ppat.1005223
                4616665
                26484673
                4fee2d8f-73db-4169-9980-5864e6dd7c40
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 July 2015
                : 22 September 2015
                Page count
                Figures: 5, Tables: 1, Pages: 19
                Funding
                This work was supported by the National Basic Research Program of China (2014CB138400), China National Science Foundation (31222004 and 31470255), the Qianjiang Talent Program of Zhejiang Province (2013R10028) and the Fundamental Research Funds for the Central Universities (2014XZZX003-31) to ZL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article