9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of CARD Region of MDA5 Gene in Canine Influenza Virus Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MDA5 belongs to the RIG-I-like receptor family, which is involved in innate immunity. During viral infection, MDA5 generates an antiviral response by recognizing the ligand to activate interferon. However, the role and mechanism of MDA5 in canine influenza virus (CIV) infection are unclear. To understand the mechanism of canine MDA5-mediated innate immunity during CIV infection, we detected the distribution of MDA5 in beagles, and the structural prediction showed that MDA5 was mainly composed of a CARD domain, RD domain, and DExD/H helix structure. Moreover, we found that MDA5 inhibits CIV replication. Furthermore, in the dual luciferase assay, we revealed that the CARD region of MDA5 strongly activated the IFN-β promoter and mainly transmitted signals through the CARD region. Overexpression of the CARD region of MDA5 revealed that the MDA5-mediated signaling pathway could transmit signals by activating the IRF3/NF-κB and IRF3 promoters, promoting the expression of antiviral proteins and cytokine release, thereby inhibiting CIV replication. Upon silencing of MDA5, cytokine production decreased, while the replication ability of CIV was increased. Thus, this study revealed a novel mechanism by which MDA5 mediated CIV infection and provided new avenues for the development of antiviral strategies.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter.

            Most paramyxoviruses circumvent the IFN response by blocking IFN signaling and limiting the production of IFN by virus-infected cells. Here we report that the highly conserved cysteine-rich C-terminal domain of the V proteins of a wide variety of paramyxoviruses binds melanoma differentiation-associated gene 5 (mda-5) product. mda-5 is an IFN-inducible host cell DExD/H box helicase that contains a caspase recruitment domain at its N terminus. Overexpression of mda-5 stimulated the basal activity of the IFN-beta promoter in reporter gene assays and significantly enhanced the activation of the IFN-beta promoter by intracellular dsRNA. Both these activities were repressed by coexpression of the V proteins of simian virus 5, human parainfluenza virus 2, mumps virus, Sendai virus, and Hendra virus. Similar results to the reporter assays were obtained by measuring IFN production. Inhibition of mda-5 by RNA interference or by dominant interfering forms of mda-5 significantly inhibited the activation of the IFN-beta promoter by dsRNA. It thus appears that mda-5 plays a central role in an intracellular signal transduction pathway that can lead to the activation of the IFN-beta promoter, and that the V proteins of paramyxoviruses interact with mda-5 to block its activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracellular pattern recognition receptors in the host response.

              The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and eliminate them. Indeed, Toll-like receptors are a class of membrane receptors that sense extracellular microbes and trigger anti-pathogen signalling cascades. Recently, intracellular microbial sensors have also been identified, including NOD-like receptors and the helicase-domain-containing antiviral proteins RIG-I and MDA5. Some of these cytoplasmic molecules sense microbial, as well as non-microbial, danger signals, but the mechanisms of recognition used by these sensors remain poorly understood. Nonetheless, it is apparent that these proteins are likely to have critical roles in health and disease.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                12 March 2020
                March 2020
                : 12
                : 3
                : 307
                Affiliations
                [1 ]College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; fucheng@ 123456zhku.edu.cn (C.F.); yeshaotang@ 123456stu.scau.edu.cn (S.Y.); 757259269@ 123456scau.stu.edu.cn (Y.L.)
                [2 ]College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
                [3 ]Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
                [4 ]Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
                Author notes
                [* ]Correspondence: shoujunli@ 123456scau.edu.cn
                Article
                viruses-12-00307
                10.3390/v12030307
                7150756
                32178353
                4fdf06f8-c6f6-48c3-86cc-8eb9a1ebf53b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2020
                : 09 March 2020
                Categories
                Article

                Microbiology & Virology
                mda5,canine influenza virus,antiviral activity,innate immunity
                Microbiology & Virology
                mda5, canine influenza virus, antiviral activity, innate immunity

                Comments

                Comment on this article