9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward the Next Generation of Spine Bioreactors: Validation of an Ex Vivo Intervertebral Disc Organ Model and Customized Specimen Holder for Multiaxial Loading

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new generation of bioreactors with integrated six degrees of freedom (6 DOF) aims to mimic more accurately the natural intervertebral disc (IVD) load. We developed and validated in a biological and mechanical study a specimen holder and corresponding ex vivo IVD organ model according to the bioreactor requirements for multiaxial loading and a long-term IVD culture. IVD height changes and cell viability were compared between the 6 DOF model and the standard 1 DOF model throughout the 3 weeks of cyclic compressive loading in the uniaxial bioreactor. Furthermore, the 6 DOF model and holder were loaded for 9 days in the multiaxial bioreactor under development using the same conditions, and the IVDs were evaluated for cell viability. The interface of the IVD model and specimen holder, enhanced with fixation screws onto the bone, was tested in compression, torsion, lateral bending, and tension. Additionally, critical motions such as tension and bending were assessed for a combination of side screws and top screws or side screws and adhesive. The 6 DOF model loaded in the uniaxial bioreactor maintained similar cell viability in the IVD regions as the 1 DOF model. The viability was high after 2 weeks throughout the whole IVD and reduced by more than 30% in the inner annulus fibrous after 3 weeks. Similarly, the IVDs remained highly viabile when cultured in the multiaxial bioreactor. In both models, IVD height changes after loading were in the range of typical physiological conditions. When differently directed motions were applied, the holder-IVD interface remained stable under hyper-physiological loading levels using a side screw approach in compression and torsion and the combination of side and top screws in tension and bending. We thus conclude that the developed holding system is mechanically reliable and biologically compatible for application in a new generation of multiaxial bioreactors.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanics and biology in intervertebral disc degeneration: a vicious circle.

          Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of dynamic loading on the intervertebral disc.

            Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complex loading affects intervertebral disc mechanics and biology.

              Complex loading develops in multiple spinal motions and in the case of hyperflexion is known to cause intervertebral disc (IVD) injury. Few studies have examined the interacting biologic and structural alterations associated with potentially injurious complex loading, which may be an important contributor to chronic progressive degeneration. This study tested the hypothesis that low magnitudes of axial compression loading applied asymmetrically can induce IVD injury affecting cellular and structural responses in a large animal IVD ex-vivo model. Bovine caudal IVDs were assigned to either a control or wedge group (15°) and placed in organ culture for 7 days under static 0.2MPa load. IVD tissue and cellular responses were assessed through confined compression, qRT-PCR, histology and structural and compositional measurements, including Western blot for aggrecan degradation products. Complex loading via asymmetric compression induced cell death, an increase in caspase-3 staining (apoptosis), a loss of aggrecan and an increase in aggregate modulus in the concave annulus fibrosis. While an up-regulation of MMP-1, ADAMTS4, IL-1β, and IL-6 mRNA, and a reduced aggregate modulus were induced in the convex annulus. Asymmetric compression had direct deleterious effects on both tissue and cells, suggesting an injurious loading regime that could lead to a degenerative cascade, including cell death, the production of inflammatory mediators, and a shift towards catabolism. This explant model is useful to assess how injurious mechanical loading affects the cellular response which may contribute to the progression of degenerative changes in large animal IVDs, and results suggest that interventions should address inflammation, apoptosis, and lamellar integrity. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                ACS Biomater Sci Eng
                ACS Biomater Sci Eng
                ab
                abseba
                ACS Biomaterials Science & Engineering
                American Chemical Society
                2373-9878
                17 August 2022
                12 September 2022
                : 8
                : 9
                : 3969-3976
                Affiliations
                []AO Research Institute Davos , Clavadelerstrasse 8, Davos 7270, Switzerland
                []Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou 510080, China
                [§ ]Institute for Biomechanics, ETH Zürich , Zürich 8093, Switzerland
                []CSEM, Swiss Center for Electronics and Microtechnology , Rue Jaquet-Droz 1, Neuchatel 2002, Switzerland
                Author notes
                [* ]Email: sibylle.grad@ 123456aofoundation.org . Tel.: +41 79 390 15 01.
                Author information
                https://orcid.org/0000-0002-9754-6389
                https://orcid.org/0000-0001-9552-3653
                Article
                10.1021/acsbiomaterials.2c00330
                9472220
                35977717
                4f1cc553-8852-4ea5-a703-9c7f9e6dadcc
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 March 2022
                : 26 July 2022
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, doi 10.13039/501100001711;
                Award ID: 189915
                Categories
                Article
                Custom metadata
                ab2c00330
                ab2c00330

                bioreactor,intervertebral disc,multiaxial loading,organ model,specimen holder,6 dof

                Comments

                Comment on this article