8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas

      , , , , , ,
      Applied Catalysis B: Environmental
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis

          Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions.

            Metal-organic frameworks (MOFs) are porous crystalline materials constructed from metal ions or clusters and multidentate organic ligands. Recently, the use of MOFs or MOF composites as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention due to their tunable open metal centres, functional organic linkers, and active guest species in their pores. In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed. These multifunctional MOFs can be categorized by the type of active centre as follows: (i) open metal centres and functional organic linkers in the MOF structure, (ii) active guest sites in the pores and active sites in the MOF structure, and (iii) bimetallic nanoparticles (NPs) on MOF supports. The types of synergistic catalysis and tandem reactions promoted by multifunctional MOFs and their proposed mechanisms are presented in detail. Here, catalytic MOFs with a single type of active site and MOFs that only serve as supports to enhance substrate adsorption are not discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hydrogen storage in metal-organic frameworks.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Applied Catalysis B: Environmental
                Applied Catalysis B: Environmental
                Elsevier BV
                09263373
                December 2020
                December 2020
                : 278
                : 119262
                Article
                10.1016/j.apcatb.2020.119262
                4f02ee2f-f62b-4185-92fb-1516e6bf85e7
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,294

                Cited by17

                Most referenced authors993