48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trypanosoma cruzi I and IV Stocks from Brazilian Amazon Are Divergent in Terms of Biological and Medical Properties in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties.

          Methodology/Principal Findings

          Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar.

          Conclusion/Significance

          T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice.

          Author Summary

          Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, constituting an important health problem in the American Continent. In the Brazilian Amazon, Chagas disease has been recognized as an emerging problem. There are few studies exploring the genetic and biological framework of stocks of T. cruzi from the Western Brazilian Amazon, where Chagas disease has a profile of lower morbidity and mortality, appearing mainly in the chronic latent form. Here, we carried out the biological characterization in mice of T. cruzi isolates belonging to TcI and TcIV DTUs from the State of Amazonas, Western Brazilian Amazon. T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice, with a higher virulence for the latter DTU as revealed by several biological parameters. Results strongly support the working hypothesis that biological differences are proportional to the evolutionary divergence among the DTUs, and highlight the need to take into account the phylogenetic diversity of T. cruzi natural stocks circulating in the emergent areas for Chagas disease in all applied studies dealing with clinical diversity of Chagas disease, immunology, diagnosis, prognosis, and drug and vaccine trials.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications.

          The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of genetic exchange in American trypanosomes.

            The kinetoplastid Protozoa are responsible for devastating diseases. In the Americas, Trypanosoma cruzi is the agent of Chagas' disease--a widespread disease transmissible from animals to humans (zoonosis)--which is transmitted by exposure to infected faeces of blood-sucking triatomine bugs. The presence of genetic exchange in T. cruzi and in Leishmania is much debated. Here, by producing hybrid clones, we show that T. cruzi has an extant capacity for genetic exchange. The mechanism is unusual and distinct from that proposed for the African trypanosome, Trypanosoma brucei. Two biological clones of T. cruzi were transfected to carry different drug-resistance markers, and were passaged together through the entire life cycle. Six double-drug-resistant progeny clones, recovered from the mammalian stage of the life cycle, show fusion of parental genotypes, loss of alleles, homologous recombination, and uniparental inheritance of kinetoplast maxicircle DNA. There are strong genetic parallels between these experimental hybrids and the genotypes among natural isolates of T. cruzi. In this instance, aneuploidy through nuclear hybridization results in recombination across far greater genetic distances than mendelian genetic exchange. This mechanism also parallels genome duplication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA markers define two major phylogenetic lineages of Trypanosoma cruzi.

              R. Souto (1996)
              Parasitic protozoa within the taxon Trypanosoma cruzi are considered to be derived from multiple clonal lineages, and show broad genetic diversity as a result of propagation with little or no genetic exchange. We have analyzed a wide sample of T. cruzi isolates from vertebrate and invertebrate hosts by PCR amplification of a ribosomal RNA gene sequence, a mini-exon gene sequence and random amplified polymorphic DNA (RAPD). Amplification of the distinct rDNA and mini-exon gene sequences indicated a dimorphism within both of the tandemly-repeated genes: 125 or 110 bp products for rDNA and 300 or 350 bp products for the mini-exon. Within individual isolates, one of three associations was observed: the 125 bp rDNA product with the 300 bp mini-exon product (defined as group 1), the 110 bp rDNA product with the 350 bp mini-exon product (defined as group 2) and the presence of both rDNA amplification products with the mini-exon group 1 product (group 1/2). The RAPD analysis showed variability between individual isolates, however, tree analysis clearly indicated the presence of two major branches. Interestingly, the rDNA/mini-exon group 2 isolates correlated precisely with one branch of the RAPD-derived tree; group 1 and group 1/2 isolates correlated with the other branch. Our studies show a clear division of T. cruzi into two major lineages presenting a high phylogenetic divergence. Hypotheses are discussed to explain the origin of the two lineages as well as isolates that are hybrid for group 1 and 2 rDNA markers.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                February 2013
                21 February 2013
                : 7
                : 2
                : e2069
                Affiliations
                [1 ]Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
                [2 ]University of the State of Amazonas, Manaus, Amazonas, Brazil
                [3 ]Federal University of Amazonas, Manaus, Amazonas, Brazil
                [4 ]State University of Maringá, Maringá, Paraná, Brazil
                [5 ]Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
                [6 ]Hygiene and Tropical Medicine Institute, Center of Malaria and other Tropical Diseases, New University of Lisbone, Lisbone, Portugal
                [7 ]Nilton Lins Universitary Center, Manaus, Amazonas, Brazil
                Universidad Centroamericana, Nicaragua
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WMM MTB HS MJdOT MdGVB. Performed the experiments: WMM APMT APG DdR MTB LKCM HS. Analyzed the data: WMM MTB HS MJdOT MdGVB. Contributed reagents/materials/analysis tools: MLG SMdA MTB HS MJdOT MdGVB. Wrote the paper: WMM APG JAdOG HS MJdOT MdGVB.

                Article
                PNTD-D-12-01178
                10.1371/journal.pntd.0002069
                3578774
                23437410
                4ef7763f-dec1-4486-a502-2bd3561258bf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 September 2012
                : 7 January 2013
                Page count
                Pages: 9
                Funding
                This study was supported by a research grant from CNPq - National Counsel of Technological and Scientific Development (410398/2006-3) and from Araucária Foundation (057/2009). HS was supported by a grant from FAPEAM - State of Amazonas Foundation for Support to Research and the Tropical Medicine Foundation Dr. Heitor Vieira Dourado. MJOT was supported by a grant from CNPq - National Counsel of Technological and Scientific Development. APMT and DR were supported by CAPES - Coordination for the Improvement of Higher Level Personnel. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Microbiology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article