14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red Blood Cell Membrane Processing for Biomedical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Red blood cells (RBC) are actually exploited as innovative drug delivery systems with unconventional and convenient properties. Because of a long in vivo survival and a non-random removal from circulation, RBC can be loaded with drugs and/or contrasting agents without affecting these properties and maintaining the original immune competence. However, native or drug-loaded RBC, can be modified decorating the membrane with peptides, antibodies or small chemical entities so favoring the targeting of the processed RBC to specific cells or organs. Convenient modifications have been exploited to induce immune tolerance or immunogenicity, to deliver antibodies capable of targeting other cells, and to deliver a number of constructs that can recognize circulating pathogens or toxins. The methods used to induce membrane processing useful for biomedical applications include the use of crosslinking agents and bifunctional antibodies, biotinylation and membrane insertion. Another approach includes the expression of engineered membrane proteins upon ex vivo transfection of immature erythroid precursors with lentiviral vectors, followed by in vitro expansion and differentiation into mature erythrocytes before administration to a patient in need. Several applications have now reached the clinic and a couple of companies that take advantage from these properties of RBC are already in Phase 3 with selected applications. The peculiar properties of the RBC and the active research in this field by a number of qualified investigators, have opened new exciting perspectives on the use of RBC as carriers of drugs or as cellular therapeutics.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Red cell membrane: past, present, and future.

          As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease.

            The biconcave shape and corresponding deformability of the human red blood cell (RBC) is an essential feature of its biological function. This feature of RBCs can be critically affected by genetic or acquired pathological conditions. In this review, we highlight new dynamic in vitro assays that explore various hereditary blood disorders and parasitic infectious diseases that cause disruption of RBC morphology and mechanics. In particular, recent advances in high-throughput microfluidic devices make it possible to sort/identify healthy and pathological human RBCs with different mechanobiological characteristics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude

              Drug delivery by nanocarriers (NCs) has long been stymied by dominant liver uptake and limited target organ deposition, even when NCs are targeted using affinity moieties. Here we report a universal solution: red blood cell (RBC)-hitchhiking (RH), in which NCs adsorbed onto the RBCs transfer from RBCs to the first organ downstream of the intravascular injection. RH improves delivery for a wide range of NCs and even viral vectors. For example, RH injected intravenously increases liposome uptake in the first downstream organ, lungs, by ~40-fold compared with free NCs. Intra-carotid artery injection of RH NCs delivers >10% of the injected NC dose to the brain, ~10× higher than that achieved with affinity moieties. Further, RH works in mice, pigs, and ex vivo human lungs without causing RBC or end-organ toxicities. Thus, RH is a clinically translatable platform technology poised to augment drug delivery in acute lung disease, stroke, and several other diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                20 August 2019
                2019
                : 10
                : 1070
                Affiliations
                [1] 1Department of Biomolecular Sciences, University of Urbino “Carlo Bo” , Urbino, Italy
                [2] 2EryDel SpA , Bresso, Italy
                Author notes

                Edited by: Giampaolo Minetti, University of Pavia, Italy

                Reviewed by: James Palis, University of Rochester, United States; Emile Van Den Akker, Sanquin Diagnostic Services, Netherlands

                *Correspondence: Mauro Magnani, mauro.magnani@ 123456uniurb.it

                This article was submitted to Red Blood Cell Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.01070
                6710399
                31481901
                4ef16792-eca2-4cae-95c9-0c857eb55baa
                Copyright © 2019 Rossi, Fraternale, Bianchi and Magnani.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 May 2019
                : 05 August 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 60, Pages: 8, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                rbc targeting,rbc carriers,rbc membrane modifications,rbc circulation,drug targeting

                Comments

                Comment on this article