42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The prediction of cancer-specific mortality in T1 non-muscle-invasive bladder cancer: comparison of logistic regression and artificial neural network: a SEER population-based study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To identify the risk factors for 5-year cancer-specific (CSS) and overall survival (OS) and to compare the accuracy of logistic regression (LR) and artificial neural network (ANN) in the prediction of survival outcomes in T1 non-muscle-invasive bladder cancer.

          Methods

          This is a population-based analysis using the Surveillance, Epidemiology, and End Results database. Patients with T1 bladder cancer (BC) who underwent transurethral resection of the tumour (TURBT) between 2004 and 2015 were included in the analysis. The predictive abilities of LR and ANN were compared.

          Results

          Overall 32,060 patients with T1 BC were randomly assigned to training and validation cohorts in the proportion of 70:30. There were 5691 (17.75%) cancer-specific deaths and 18,485 (57.7%) all-cause deaths within a median of 116 months of follow-up (IQR 80–153). Multivariable analysis with LR revealed that age, race, tumour grade, histology variant, the primary character, location and size of the tumour, marital status, and annual income constitute independent risk factors for CSS. In the validation cohort, LR and ANN yielded 79.5% and 79.4% accuracy in 5-year CSS prediction respectively. The area under the ROC curve for CSS predictions reached 73.4% and 72.5% for LR and ANN respectively.

          Conclusions

          Available risk factors might be useful to estimate the risk of CSS and OS and thus facilitate optimal treatment choice. The accuracy of survival prediction is still moderate. T1 BC with adverse features requires more aggressive treatment after initial TURBT.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s11255-023-03655-5.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance medicine: the convergence of human and artificial intelligence

            Eric Topol (2019)
            The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in radiology

              Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this O pinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.
                Bookmark

                Author and article information

                Contributors
                slusarczyk.aleksander@gmail.com
                zapala.piotrek@gmail.com
                zolszewska@womenintechnology.pl
                pradziszewski@wum.edu.pl
                Journal
                Int Urol Nephrol
                Int Urol Nephrol
                International Urology and Nephrology
                Springer Netherlands (Dordrecht )
                0301-1623
                1573-2584
                6 June 2023
                6 June 2023
                2023
                : 55
                : 9
                : 2205-2213
                Affiliations
                [1 ]GRID grid.13339.3b, ISNI 0000000113287408, Department of General, Oncological and Functional Urology, , Medical University of Warsaw, ; Lindleya 4, 02-005 Warsaw, Poland
                [2 ]GRID grid.1035.7, ISNI 0000000099214842, Faculty of Electronics and Information Technology, , Warsaw University of Technology, ; Warsaw, Poland
                Author information
                http://orcid.org/0000-0002-4344-0191
                Article
                3655
                10.1007/s11255-023-03655-5
                10406653
                37280316
                4e48dfa8-6c00-41be-92bd-049796cdf6de
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 March 2023
                : 27 May 2023
                Categories
                Urology - Original Paper
                Custom metadata
                © Springer Nature B.V. 2023

                Nephrology
                non-muscle-invasive bladder cancer,t1 stage,survival,artificial neural network,deep learning

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content188

                Cited by3

                Most referenced authors618