29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these “advanced tandem mass spectrometry” strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMDB 4.0: the human metabolome database for 2018

          Abstract The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB’s chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC–MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VMD: visual molecular dynamics.

            VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Identifying small molecules via high resolution mass spectrometry: communicating confidence.

                Bookmark

                Author and article information

                Contributors
                sven.heiles@anorg.chemie.uni-giessen.de
                Journal
                Anal Bioanal Chem
                Anal Bioanal Chem
                Analytical and Bioanalytical Chemistry
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1618-2642
                1618-2650
                18 June 2021
                18 June 2021
                2021
                : 413
                : 24
                : 5927-5948
                Affiliations
                GRID grid.8664.c, ISNI 0000 0001 2165 8627, Institute of Inorganic and Analytical Chemistry, , Justus Liebig University Giessen, ; Heinrich Buff Ring 17, 35392 Giessen, Germany
                Article
                3425
                10.1007/s00216-021-03425-1
                8440309
                34142202
                4d23ce46-bcd0-424a-853b-e6f334f6c19a
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 April 2021
                : 11 May 2021
                : 19 May 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100007215, Verband der Chemischen Industrie;
                Award ID: Liebig fellowship
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: HE 8521/1-1
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Analytical chemistry
                tandem mass spectrometry,lipidomics,metabolomics,mass spectrometry imaging,hplc,biopolymers/lipids

                Comments

                Comment on this article